Synlett
DOI: 10.1055/s-0042-1752337
synpacts

Enantioselective Alkylation of Amino Acid Derivatives with ­Unactivated Olefins via C–N Bond Cleavage

Yue-Ming Cai
,
Ming Shang
Financial support for this work was provided by the National Natural Science Foundation of China (Grant No. 22101171), ‘Thousand Youth Talents Plan’, and startup funding from Shanghai Jiao Tong University (SJTU).


Abstract

We reported a nickel-catalyzed enantioconvergent deaminative alkylation of α-amino acid derivatives with unactivated olefins, providing an efficient and convenient access to a range of α-enantioenriched amides. This method represents the first example of enantioselective deaminative functionalization with racemic amine precursors and features in mild conditions and broad substrate scope. New sterically encumbered bis(oxazoline) ligand was developed to improve both reactivity and enantioselectivity, which is key to the success of this reaction.



Publication History

Received: 13 July 2022

Accepted after revision: 09 August 2022

Article published online:
21 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science. Wiley-VCH; New York: 2003

    • For selected reviews on transition-metal-catalyzed enantioselective cross-couplings to construct C(sp3)–C(sp3) bonds, see:
    • 2a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 2b Fu GC. ACS Cent. Sci. 2017; 3: 692
    • 2c Geist E, Kirschning A, Schmidt T. Nat. Prod. Rep. 2014; 31: 441
    • 2d Choi J, Fu GC. Science 2017; 356: eaaf7230
  • 3 Fischer C, Fu GC. J. Am. Chem. Soc. 2005; 127: 4594
  • 4 Wang Z, Yin H, Fu GC. Nature 2018; 563:  379
    • 5a Maity P, Shacklady-McAtee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 5b Basch CH, Cobb KM, Watson MP. Org. Lett. 2016; 18: 136
    • 5c Hu J, Sun H, Cai W, Pu X, Zhang Y, Shi Z. J. Org. Chem. 2016; 81: 14
    • 5d Li M, Wang Y, Tian S. Angew. Chem. Int. Ed. 2012; 51: 2968
    • 5e Li M, Tang X, Tian S. Adv. Synth. Catal. 2011; 353: 1980
    • 5f Guisán-Ceinos M, Martín-Heras V, Tortosa M. J. Am. Chem. Soc. 2017; 139: 8448

      For selected references, see:
    • 7a Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
    • 7b Plunkett S, Basch CH, Santana SO, Watson MP. J. Am. Chem. Soc. 2019; 141: 2257
    • 7c Martin-Montero R, Yatham VR, Yin H, Davies J, Martin R. Org. Lett. 2019; 21: 2947
    • 7d Liao J, Basch CH, Hoerrner ME, Talley MR, Boscoe BP, Tucker JW, Garnsey MR, Watson MP. Org. Lett. 2019; 21: 2941
    • 7e Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M. Chem. Sci. 2019; 10: 4430
    • 7f Yi J, Badir SO, Kammer LM, Ribagorda M, Molander GA. Org. Lett. 2019; 21: 3346
    • 7g Xu J, Twitty JC, Watson MP. Org. Lett. 2021; 23: 6242
    • 7h Wu J, He L, Noble A, Aggarwal VK. J. Am. Chem. Soc. 2018; 140: 10700
    • 7i Hoerrner ME, Baker KM, Basch CH, Bampo EM, Watson MP. Org. Lett. 2019; 21: 7356

      For selected examples of Ni–H-catalyzed enantioconvergent sp3 cross-coupling reactions on alkyl halides, see:
    • 8a Zhou F, Zhang Y, Xu X, Zhu S. Angew. Chem. Int. Ed. 2019; 58: 1754
    • 8b He S, Wang J, Li Y, Xu Z, Wang X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214
    • 8c Bera S, Mao R, Hu X. Nat. Chem. 2021; 13: 270
    • 8d Qian D, Bera S, Hu X. J. Am. Chem. Soc. 2021; 143: 1959
    • 8e Shi L, Xing L.-L, Hu W.-B, Shu W. Angew. Chem. Int. Ed. 2021; 60: 1599

      For selected examples of transition-metal-catalyzed reactions using substituted pyridine ligands, see:
    • 9a Kwong H, Yeung H, Yeung C, Lee W, Lee C, Wong W. Coord. Chem. Rev. 2007; 251: 2188
    • 9b Zhang Y, Shi B, Yu J. J. Am. Chem. Soc. 2009; 131: 5072
    • 9c Weemers JJ. M, Wiecko J, Pidko EA, Weber M, Lutz M, Müller C. Chem. Eur. J. 2013; 19: 14458
    • 9d Wang P, Verma P, Xia G, Shi J, Qiao J, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K, Yu J. Nature 2017; 551: 489
    • 9e Garbe S, Krause M, Klimpel A, Neundorf I, Lippmann P, Ott I, Brünink D, Strassert CA, Doltsinis NL, Klein A. Organometallics 2020; 39: 746
    • 10a Sun S.-Z, Cai Y.-M, Zhang D.-L, Wang J.-B, Yao H.-Q, Rui X.-Y, Martin R, Shang M. J. Am. Chem. Soc. 2022; 144: 1130
    • 10b Sun S, Romano C, Martin R. J. Am. Chem. Soc. 2019; 141: 16197
    • 11a Huo H, Gorsline BJ, Fu GC. Science 2020; 367: 559
    • 11b Derosa J, Tran VT, Boulous MN, Chen JS, Engle KM. J. Am. Chem. Soc. 2017; 139: 10657
    • 11c Derosa J, van der Puyl VA, Tran VT, Liu M, Engle KM. Chem. Sci. 2018; 9: 5278

      For selected reviews on Ni-catalyzed chain-walking reactions:
    • 12a Janssen-Müller D, Sahoo B, Sun S, Martin R. Isr. J. Chem. 2020; 60: 195
    • 12b Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
    • 12c Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
    • 12d Larionov E, Li H, Mazet C. Chem. Commun. 2014; 50: 9816
    • 12e Juliá-Hernández F, Moragas T, Cornella J, Martin R. Nature 2017; 545: 84
    • 12f He Y, Cai Y, Zhu S. J. Am. Chem. Soc. 2017; 139: 1061
    • 12g Wang W, Ding C, Li Y, Li Z, Li Y, Peng L, Yin G. Angew. Chem. Int. Ed. 2019; 58: 4612
    • 12h Li Y, Luo Y, Peng L, Li Y, Zhao B, Wang W, Pang H, Deng Y, Bai R, Lan Y, Yin G. Nat. Commun. 2020; 11: 417
    • 13a Nestor JJ. Curr. Med. Chem. 2009; 16: 4399
    • 13b Albericio F, Kruger H. Future Med. Chem. 2012; 4: 1527
    • 13c Muttenthaler M, King GF, Adams DJ, Alewood PF. Nat. Rev. Drug Discovery 2021; 20: 309
    • 14a Wang X, Lu X, Li Y, Wang J, Fu Y. Sci. China Chem. 2020; 63:  1586
    • 14b Zhang Z, Bera S, Fan C, Hu X. J. Am. Chem. Soc. 2022; 144: 7015
    • 15a Yang ZP, Fu GC. J. Am. Chem. Soc. 2020; 142: 5870
    • 15b Chen J, Zhu S. J. Am. Chem. Soc. 2021; 143: 14089
    • 15c Lu X, Xiao B, Zhang Z, Gong T, Su W, Yi J, Fu Y, Liu L. Nat. Commun. 2016; 7:  11129
    • 15d Sun S, Börjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
    • 15e Zhou F, Zhu J, Zhang Y, Zhu S. Angew. Chem. Int. Ed. 2018; 57: 4058
    • 15f Wang Z, Wan J, Wang G, Wang R, Jin R, Lan Q, Wang X. Tetrahedron Lett. 2018; 59: 2302
    • 15g Bera S, Hu X. Angew. Chem. Int. Ed. 2019; 58: 13854
    • 15h Zhang Y, Han B, Zhu S. Angew. Chem. Int. Ed. 2019; 58: 13860
    • 15i Du B, Ouyang Y, Chen Q, Yu W.-Y. J. Am. Chem. Soc. 2021; 143: 14962
    • 15j Chen X, Rao W, Yang T, Koh MJ. Nat. Commun. 2020; 11:  5857
    • 15k Zhang P, Zhang M, Ji Y, Xing M, Zhao Q, Zhang C. Org. Lett. 2020; 22: 8285
    • 15l Yang P, Zhu L, Liang J, Zhao H, Zhang J, Zeng X, Ouyang Q, Shu W. ACS Catal. 2022; 12: 5795
    • 15m Zhao L, Zhu Y, Liu M, Xie L, Liang J, Shi H, Meng X, Chen Z, Han J, Wang C. Angew. Chem. Int. Ed. 2022; 61: e202204716
    • 15n Yang P.-F, Shu W. Angew. Chem. Int. Ed. 2022; 61: e202208018
    • 15o Qian D, Hu X. Angew. Chem. Int. Ed. 2019; 58: 18519
    • 15p Wang J.-W, Liu D.-G, Chang Z, Li Z, Fu Y, Lu X. Angew. Chem. Int. Ed. 2022; 61: e202205537
    • 16a He Y, Cai A, Zhu S. J. Am. Chem. Soc. 2017; 139: 1061
    • 16b Ni S, Li C.-X, Mao Y, Han J, Wang Y, Yan H, Pan Y. Sci. Adv. 2019; 5: eaaw9516
    • 16c Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M. Chem. Sci. 2019; 10: 4430