Synlett
DOI: 10.1055/s-0042-1751546
letter
Chemical Synthesis and Catalysis in Germany

Synthesis of New Highly Functionalized Quinolines via a Novel FeIII-Catalyzed Domino aza-Michael/Aldol/Aromatization Reaction

Felix Heckmann
a   Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
,
Mohammad M. Ibrahim
a   Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
b   Department of Chemistry, Faculty of Science, University of Al al-Bayt, P. O. Box 130040, 25113 Al-Mafraq, Jordan
,
Frank Hampel
a   Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
,
a   Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
› Author Affiliations
We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, grant no. TS 87/28-1 for S.B.T.).


Abstract

We report the development of a straightforward, waste-reducing, environmentally friendly, FeIII-catalyzed domino aza-Michael/aldol/aromatization reaction in the presence of water to access high-value functionalized quinolines by using 2-aminobenzophenones and ethyl buta-2,3-dienoate as starting compounds. The tangible advantages, that is, the utilization of commercially available and/or easily accessible substrates, simplicity, mild reaction conditions, and application of water as a solvent, make this three-step domino process green and highly appealing for the direct construction of a wide variety of highly functionalized quinolines in up to 78% yield.

Supporting Information



Publication History

Received: 10 October 2023

Accepted after revision: 11 December 2023

Article published online:
24 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Vandekerckhove S, Tran HG, Desmet T, D’hooghe M. Bioorg. Med. Chem. Lett. 2013; 23: 4641
  • 2 Lam K.-H, Gambari R, Lee KK.-H, Chen Y.-X, Kok SH.-L, Wong RS.-M, Lau F.-Y, Cheng C.-H, Wong W.-Y, Bian Z.-X, Chan AS.-C, Tang JC.-O, Chui C.-H. Bioorg. Med. Chem. Lett. 2014; 24: 367
  • 3 Ratheesh M, Sindhu G, Helen A. Inflammation Res. 2013; 62: 367
  • 4 Finley KT. Quinolines and Isoquinolines. In Kirk–Othmer Encyclopedia of Chemical Technology, Wiley Interscience: Hoboken, 2015 . DOI: 10.1002/0471238961.1721091406091412.a01.pub3
  • 5 de La Guardia C, Stephens DE, Dang HT, Quijada M, Larionov OV, Lleonart R. Molecules 2018; 23: 672
  • 6 Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Virol. J. 2005; 2: 69
  • 7 Rolain J.-M, Colson P, Raoult D. Int. J. Antimicrob. Agents 2007; 30: 297
  • 8 Zheng X, Wang L, Wang B, Miao K, Xiang K, Feng S, Gao L, Shen HC, Yun H. ACS Med. Chem. Lett. 2016; 7: 558
  • 9 Talamas FX, Abbot SC, Anand S, Brameld KA, Carter DS, Chen J, Davis D, de Vicente J, Fung AD, Gong L, Harris SF, Inbar P, Labadie SS, Lee EK, Lemoine R, Le Pogam S, Leveque V, Li J, McIntosh J, Nájera I, Park J, Railkar A, Rajyaguru S, Sangi M, Schoenfeld RC, Staben LR, Tan Y, Taygerly JP, Villaseñor AG, Weller PE. J. Med. Chem. 2014; 57: 1914
  • 10 Ezgimen M, Lai H, Mueller NH, Lee K, Cuny G, Ostrov DA, Padmanabhan R. Antiviral Res. 2012; 94: 18
  • 11 Barbosa-Lima G, Moraes AM, Da Araújo AS, Da Silva ET, de Freitas CS, Vieira YR, Marttorelli A, Neto JC, Bozza PT, de Souza MV. N, Souza TM. L. Eur. J. Med. Chem. 2017; 127: 334
  • 12 Vella S, Floridia M. Clin. Pharmacokinet. 1998; 34: 189
  • 13 D’Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, Delbue S. Microorganisms 2020; 8: 85
    • 14a Devaux CA, Rolain J.-M, Colson P, Raoult D. Int. J. Antimicrob. Agents 2020; 55: 105938
    • 14b Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, van Ranst M, Maes P. Antimicrob. Agents Chemother. 2009; 53: 3416
    • 14c Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Cell Res. 2020; 30: 269
  • 15 Ramann GA, Cowen BJ. Molecules 2016; 21: 986
  • 16 Skraup ZH. Monatsh. Chem. 1880; 1: 316
  • 17 Knorr L. Justus Liebigs Ann. Chem. 1886; 236: 69
  • 18 Döbner O. Justus Liebigs Ann. Chem. 1887; 242: 265
    • 19a Batista VF, Pinto DC. G. A, Silva AM. S. ACS Sustainable Chem. Eng. 2016; 4: 4064
    • 19b Desai NC, Maheta AS, Rajpara KM, Joshi VV, Vaghani HV, Satodiya HM. J. Saudi Chem. Soc. 2014; 18: 963
    • 19c Harikrishna S, Gangu KK, Robert AR, Ganja H, Kerru N, Maddila S, Jonnalagadda SB. Process Saf. Environ. Prot. 2022; 159: 911
    • 19d Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
    • 19e Mokhtar M, Alghamdi KS, Ahmed NS, Bakhotmah D, Saleh TS. J. Enzyme Inhib. Med. Chem. 2021; 36: 1454
    • 19f Mou R.-Q, Zhao M, Lv X.-X, Zhang S.-Y, Guo D.-S. RSC Adv. 2018; 8: 9555
    • 19g Patel A, Patel S, Mehta M, Patel Y, Patel R, Shah D, Patel D, Shah U, Patel M, Patel S, Solanki N, Bambharoliya T, Patel S, Nagani A, Patel H, Vaghasiya J, Shah H, Prajapati B, Rathod M, Bhimani B, Patel R, Bhavsar V, Rakholiya B, Patel M, Patel P. Green Chem. Lett. Rev. 2022; 15: 337
    • 19h Patel DB, Rajani DP, Rajani SD, Patel HD. J. Heterocycl. Chem. 2020; 57: 1524
    • 19i Reddy LV, Nallapati SB, Beevi SS, Mangamoori LN, Mukkanti K, Pal S. J. Braz. Chem. Soc. 2011; 22: 1742
    • 19j Reddy RS, Zheng S, Lagishetti C, You H, He Y. RSC Adv. 2016; 6: 68199
    • 19k Santhosh Reddy R, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 19l Singh HK, Kamal A, Maury SK, Kushwaha AK, Srivastava V, Singh S. Org. Biomol. Chem. 2023; 21: 4854
    • 19m Tasqeeruddin S, Asiri Y, Alsherhri JA. Lett. Org. Chem. 2020; 17: 157
    • 19n Yadav P, Bhalla A. ChemistrySelect 2022; 7: e202201721
    • 19o You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
    • 20a Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
    • 20b Marqués-López E, Herrera RP, Christmann M. Nat. Prod. Rep. 2010; 27: 1138
    • 20c de Figueiredo RM, Christmann M. Eur. J. Org. Chem. 2007; 2575
    • 20d Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 21a Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 21b Chapman C, Frost C. Synthesis 2007; 1
    • 21c Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 21d Guo H.-C, Ma J.-A. Angew. Chem. Int. Ed. 2006; 45: 354
    • 21e Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 21f Pellissier H. Tetrahedron 2006; 62: 1619
    • 21g Pellissier H. Tetrahedron 2006; 62: 2143
    • 21h Tietze LF. Chem. Rev. 1996; 96: 115
    • 21i Tietze L.-F, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 21j Vaxelaire C, Winter P, Christmann M. Angew. Chem. Int. Ed. 2011; 50: 3605
    • 22a Held FE, Guryev AA, Fröhlich T, Hampel F, Kahnt A, Hutterer C, Steingruber M, Bahsi H, von Bojničić-Kninski C, Mattes DS, Foertsch TC, Nesterov-Mueller A, Marschall M, Tsogoeva SB. Nat. Commun. 2017; 8: 15071
    • 22b Grau BW, Bönisch S, Neuhauser A, Hampel F, Görling A, Tsogoeva SB. ChemCatChem 2019; 11: 3982
    • 22c Grau D, Grau BW, Hampel F, Tsogoeva SB. Chem. Eur. J. 2018; 24: 6551