Subscribe to RSS
DOI: 10.1055/s-0042-1751412
Retro-[4+2]/Intramolecular Diels–Alder Cascade Allows a Concise Total Synthesis of Lucidumone
Guanghao Huang’s PhD was funded by the China Scholarship Council. The research was carried out using Centre National de la Recherche Scientifique (CNRS) and Université Paris-Saclay research credits.
Abstract
Lucidumone is a recently isolated meroterpenoid displaying interesting biological activity. This natural product possesses a complex structure, including a bicyclo[2.2.2]octane possessing 6 contiguous stereogenic centers. Herein, we discuss strategies to solve this synthetic challenge. In particular, we developed a new method for the inverse electron-demand Diels–Alder cycloaddition between 2-pyrones and acyclic enol ethers, as a mean to obtain a ‘masked’ cyclohexadiene. This method allowed an expeditious enantioselective synthesis of (+)-lucidumone through a retro-[4+2]/intramolecular Diels–Alder reaction cascade.
1 Introduction
2 Retrosynthetic Considerations on the Bicyclo[2.2.2]octane
3 Development of a Methodology for Enantioselective IEDDA Cycloadditions
4 Enantioselective Total Synthesis of (+)-Lucidumone
5 Conclusion
Key words
total synthesis - meroterpenoid - Diels–Alder - enantioselectivity - diastereoselectivity - catalysis - cascade reactionsPublication History
Received: 19 December 2022
Accepted after revision: 04 January 2023
Article published online:
30 January 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Yan Y.-M, Zhang H.-X, Liu H, Wang Y, Wu J.-B, Li Y.-P, Cheng Y.-X.. Org. Lett. 2019; 21: 8523
- 2a Flower RJ. Nat. Rev. Drug Discovery 2003; 2: 179
- 2b Dieppe PA, Ebrahim S, Martin RM, Jüni P. BMJ 2004; 329: 867
- 3 Ma S, Li Z, Yu P, Shi H, Yang H, Yi J, Zhang Z, Duan X, Xie X, She X. Org. Lett. 2022; 24: 5541
- 4a Juhl M, Tanner D. Chem. Soc. Rev. 2009; 38: 2983
- 4b Heravi MM, Vavsari VF. RSC Adv. 2015; 5: 50890
- 4c Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
- 4d Min L, Hu Y.-J, Fan J.-H, Zhang W, Li C.-C. Chem. Soc. Rev. 2020; 49: 7015
- 4e Liu J, Xi S, Tang Y. Synlett 2022; 33: 836
- 4f Sara AA, Um-e-Farwa U.-e.-F, Saeed A, Kalesse M. Synthesis 2022; 54: 975
- 5a Gong J, Chen H, Liu X.-Y, Wang Z.-X, Nie W, Qin Y. Nat. Commun. 2016; 7: 12183
- 5b Xie S, Chen G, Yan H, Hou J, He Y, Zhao T, Xu J. J. Am. Chem. Soc. 2019; 141: 3435
- 6 Liu J, Ma D. Angew. Chem. Int. Ed. 2018; 57: 6676
- 7 Leung JC, Bedermann AA, Njardarson JT, Spiegel DA, Murphy GK, Hama N, Twenter BM, Dong P, Shirahata T, McDonald IM, Inoue M, Taniguchi N, McMahon TC, Schneider CM, Tao N, Stoltz BM, Wood JL. Angew. Chem. Int. Ed. 2018; 57: 1991
- 8 Nie W, Gong J, Chen Z, Liu J, Tian D, Song H, Liu X.-Y, Qin Y. J. Am. Chem. Soc. 2019; 141: 9712
- 9 Yu K, Yao F, Zeng Q, Xie H, Ding H. J. Am. Chem. Soc. 2021; 143: 10576
- 10a Cai Q. Chin. J. Chem. 2019; 37: 946
- 10b Huang G, Kouklovsky C, de la Torre A. Chem. Eur. J. 2021; 27: 4760
- 10c Si X.-G, Zhang Z.-M, Cai Q. Synlett 2021; 32: 947
- 10d Xu M, Cai Q. Chin. J. Org. Chem. 2022; 42: 698
- 11a Markó IE, Evans GR, Declerq JP. Tetrahedron 1994; 50: 4557
- 11b Markó IE, Evans GR. Tetrahedron Lett. 1994; 35: 2771
- 11c Posner GH, Carry JC, Lee JK, Bull DS, Dai H. Tetrahedron Lett. 1994; 35: 1321
- 11d Posner GH, Eydoux F, Lee JK, Bull DS. Tetrahedron Lett. 1994; 35: 7541
- 11e Posner GH, Dai H, Bull DS, Lee JK, Eydoux F, Ishihara Y, Welsh W, Pryor N, Petr S. J. Org. Chem. 1996; 61: 671
- 11f Markó IE, Chellé-Regnaut I, Leroy B, Warriner SL. Tetrahedron Lett. 1997; 38: 4269
- 12 Liang X.-W, Zhao Y, Si X.-G, Xu M.-M, Tan J.-H, Zhang Z.-M, Zheng C.-G, Zheng C, Cai Q. Angew. Chem. Int. Ed. 2019; 58: 14562
- 13a Si X.-G, Zhang Z.-M, Zheng C.-G, Li Z.-T, Cai Q. Angew. Chem. Int. Ed. 2020; 59: 18412
- 13b Xu M.-M, You X.-Y, Zhang Y.-Z, Lu Y, Tan K, Yang L, Cai Q. J. Am. Chem. Soc. 2021; 143: 8993
- 13c Xu M.-M, Yang L, Tan K, Chen X, Lu Q.-T, Houk KN, Cai Q. Nat. Catal. 2021; 4: 892
- 13d Lu Y, Xu M.-M, Zhang Z.-M, Zhang J, Cai Q. Angew. Chem. Int. Ed. 2021; 60: 26610
- 13e Zhang F, Ren B.-T, Zhou Y, Liu Y, Feng X. Chem. Sci. 2022; 13: 5562
- 13f Zhang F, Ren B.-T, Liu Y, Feng X. Org. Chem. Front. 2022; 9: 3956
- 13g You X.-Y, Cai Q. Synlett 2022; 33: in press DOI: 10.1055/a-1990-5276.
- 13h He J.-X, Si X.-G, Lu Q.-T, Zhang Q.-W, Cai Q. Chin. J. Chem. 2023; 41: 21
- 14 Burch P, Binaghi M, Scherer M, Wentzel C, Bossert D, Eberhardt L, Neuburger M, Scheiffele P, Gademann K. Chem. Eur. J. 2013; 19: 2589
- 15 Huang G, Guillot R, Kouklovsky C, Maryasin B, de la Torre A. Angew. Chem. Int. Ed. 2022; 61: e202208185
For general reviews on IMDA reactions and their application in total synthesis, see:
For reviews on 2-pyrones in IEDDA reactions, see:
For recent examples with different dienophiles, see: