CC BY 4.0 · Synlett 2023; 34(08): 937-942
DOI: 10.1055/s-0042-1751411
letter

A Cyclobutanol Ring-Expansion Approach to Oxygenated Carbazoles: Total Synthesis of Glycoborine, Carbazomycin A and Carbazomycin B

,
,
The authors gratefully acknowledge the receipt of an EPSRC Imperial College London President’s Scholarship (to P.N.). Additional generous funding from the late Dr. Isabel Bader and Dr. Alfred Bader (to P.J.P.) is gratefully recognized.


Abstract

The transition-metal-free total syntheses of the oxygenated carbazole natural products glycoborine, carbazomycin A and carbazomycin B are reported. The key step involves an NBS-mediated cyclobutanol ring expansion to 4-tetralones for the preparation of the tricyclic carbazole core.

Supporting Information



Publication History

Received: 27 November 2022

Accepted after revision: 28 December 2022

Article published online:
24 January 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chakravarty AK, Sarkar T, Masuda K, Takey T, Doi H, Kotani E, Shiojima K. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2001; 40: 484
  • 2 Chakravarty AK, Sarkar T, Masuda K, Shiojima K. Phytochemistry 1999; 50: 1263
  • 3 Chakraborty A, Chowdhury BK, Jash SS, Biswas GK, Bhattacharyya SK, Bhattacharyya P. Phytochemistry 1992; 31: 2503
  • 4 Yan Q, Gin E, Wasinska-Kalwa M, Banwell MG, Carr PD. J. Org. Chem. 2017; 82: 4148
  • 5 Brütting C, Hesse R, Jäger A, Kataeva O, Schmidt AW, Knölker H.-J. Chem. Eur. J. 2016; 22: 16897
  • 6 Gao H, Xu Q.-L, Yousufuddin M, Ess DH, Kürti L. Angew. Chem. Int. Ed. 2014; 53: 2701
  • 7 Bhatthula BK. G, Kanchani JR, Arava VR, Subha MC. S. Tetrahedron 2019; 75: 874
  • 8 Kuethe JT, Childers KG. Adv. Synth. Catal. 2008; 350: 1577
  • 9 Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 3103
  • 10 Yang L, Zhang Y, Zou X, Lu H, Li G. Green Chem. 2018; 20: 1362
  • 11 Yang L, Li H, Zhang H, Lu H. Eur. J. Org. Chem. 2016; 5611
  • 12 Akiyama T, Wada Y, Yamada M, Shio Y, Honma T, Shimoda S, Tsuruta K, Tamenori Y, Haneoka H, Suzuki T, Harada K, Tsurugi H, Mashima K, Hasegawa J, Sato Y, Arisawa M. Org. Lett. 2020; 22: 7244
  • 13 Sakano K.-I, Ishimaru K, Nakamura S. J. Antibiot. 1980; 33: 683
  • 14 Sakano K.-I, Nakamura S. J. Antibiot. 1980; 33: 961
  • 15 Nakamura S, Kaneda M, Sakano K, Kushi Y, Iitaka Y. Heterocycles 1981; 15: 993
  • 16 Kaneda M, Naid T, Kitahara T, Nakamura S, Hirata T, Suga T. J. Antibiot. 1988; 41: 602
  • 17 Nishiyama T, Hatae N, Yoshimura T, Takaki S, Abe T, Ishikura M, Hibino S, Choshi T. Eur. J. Med. Chem. 2016; 121: 561
  • 18 Karwehl S, Jansen R, Huch V, Stadler M. J. Nat. Prod. 2016; 79: 369
  • 19 Hook DJ, Yacobucci JJ, O’Connor S, Lee M, Kerns E, Krishnan B, Matson J, Hesler G. J. Antibiot. 1990; 43: 1347
  • 20 Intaraudom C, Rachtawee P, Suvannakad R, Pittayakhajonwut P. Tetrahedron 2011; 67: 7593
  • 21 Knölker H.-J, Bauermeister M. J. Chem. Soc., Chem. Commun. 1989; 1468
  • 22 Knölker H.-J, Fröhner W. Tetrahedron Lett. 1999; 40: 6915
  • 23 Markad SB, Argade NP. Org. Lett. 2014; 16: 5470
  • 24 Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193 ; and references cited therein
  • 25 Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303 ; and references cited therein
  • 26 Moody CJ, Shah P. J. Chem. Soc., Perkin Trans. 1 1989; 376
  • 27 Beccalli EM, Marchesini A, Pilati T. Tetrahedron 1996; 52: 3029
  • 28 Wu S, Harada S, Morikawa T, Nishida A. Chem. Pharm. Bull. 2018; 66: 178
  • 29 Hibino S, Tonari A, Choshi T, Sugino E. Heterocycles 1993; 35: 441
  • 30 Knölker H.-J, Bauermeister M, Bläser D, Boese R, Pannek J.-B. Angew. Chem. 1989; 101: 225
  • 31 Knölker H.-J, Bauermeister M. Helv. Chim. Acta 1993; 76: 2500
  • 32 Crich D, Rumthao S. Tetrahedron 2004; 60: 1513
  • 33 Clive DL. J, Etkin N, Joseph T, Lown JW. J. Org. Chem. 1993; 58: 2442
  • 34 Singh S, Samineni R, Pabbaraja S, Mehta G. Org. Lett. 2019; 21: 3372
  • 35 Leclair A, Wang Q, Zhu J. ACS Catal. 2022; 12: 1209
  • 36 Natho P, Kapun M, Allen LA. T, Parsons PJ. Org. Lett. 2018; 20: 8030
  • 37 Natho P, Allen LA. T, White AJ. P, Parsons PJ. J. Org. Chem. 2019; 84: 9611
  • 38 Natho P, Rouse AB, Greenfield JL, Allen LA. T, White AJ. P, Yang Z, Parsons PJ. Tetrahedron 2020; 76: 131636
  • 39 Natho P, Allen LA. T, Parsons PJ. Tetrahedron Lett. 2020; 61: 151695
  • 40 Petti A, Natho P, Lam K, Parsons PJ. Eur. J. Org. Chem. 2021; 854
  • 41 Parsons PJ, Jones DR, Walsh LJ, Allen LA. T, Onwubiko A, Preece L, Board J, White AJ. P. Org. Lett. 2017; 19: 2533
  • 42 Chandler M, Parsons PJ. J. Chem. Soc., Chem. Commun. 1984; 322
  • 43 Parsons PJ, Pennicott L, Eshelby J, Goessman M, Highton A, Hitchcock P. J. Org. Chem. 2007; 72: 9387
  • 44 Greenwood E, Hitchcock P, Parsons P. Tetrahedron 2003; 59: 3307
  • 45 Natho P. The Discovery and Application of Metal-Free Cyclobutanol Ring Expansion Reactions, Ph.D. Thesis; Imperial College London, UK, 2021.
  • 46 Tecle H, Bergmeier SC, Wise LD, Hershenson FM, Coughenour LL, Heffner TG. J. Heterocycl. Chem. 1989; 26: 1125
  • 47 5-Methoxy-3-methyl-9H-carbazole (Glycoborine) To a solution of 5-methoxy-3-methyl-9-tosyl-9H-carbazole (9) (20 mg, 0.055 mmol) in degassed ethanol (5 mL) was added finely ground potassium hydroxide (15 mg, 0.27 mmol) in one portion. The resulting solution was heated at reflux for 20 hours, before cooling to room temperature and removal of the volatiles under reduced pressure. The concentrate was dissolved in ethyl acetate (10 mL), and the organic layer was washed with deionized water (2 × 10 mL) and saturated aqueous sodium chloride solution (15 mL), dried over magnesium sulfate, filtered, and concentrated under reduced pressure to afford the title compound (10 mg, 0.047 mmol, 85%) as a white solid (mp 135.1–136.8 °C [Lit.1 155–156 °C; PE–CHCl3]). IR (neat): 3405, 3042, 3004, 2948, 2915, 2837, 1606, 1586, 1506, 1459, 1260, 1100 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.14 (br s, 1 H), 7.91 (br s, 1 H), 7.33 (t, J = 8.0 Hz, 1 H), 7.28 (dd, J = 8.2, 0.7 Hz, 1 H), 7.22 (ddd, J = 8.2, 1.7, 0.7 Hz, 1 H), 7.01 (dd, J = 8.2, 0.7 Hz, 1 H), 6.67 (dd, J = 8.0, 0.7 Hz, 1 H), 4.09 (s, 3 H), 2.55 (d, J = 0.8 Hz, 3 H). 13C{1H} NMR (101 MHz, CDCl3): δ = 156.2, 141.2, 136.9, 128.9, 126.5, 126.2, 123.0, 122.8, 112.5, 109.6, 103.5, 100.2, 55.4, 21.5. HRMS (APCI): m/z [M + H]+ calcd for C14H14ON: 212.1070; found: 212.1067. The spectroscopic data (1H NMR, 13C{1H} NMR and IR) are consistent with the literature.1
  • 48 Falmagne J.-B, Escudero J, Taleb-Sahraoui S, Ghosez L. Angew. Chem. 1981; 93: 926
  • 49 Houge C, Frisque-Hesbain AM, Mockel A, Ghosez L, Declercq JP, Germain G, Van Meerssche M. J. Am. Chem. Soc. 1982; 104: 2920
  • 50 Ramalingan C, Lee I.-S, Kwak Y.-W. Chem. Pharm. Bull. 2009; 57: 591
  • 51 Nagakura I, Savary DN.-H, Schlosser M. Helv. Chim. Acta 1980; 63: 1257
  • 52 ten Brink G.-J, Arends IW. C. E, Sheldon RA. Chem. Rev. 2004; 104: 4105
  • 53 Wu S, Harada S, Morikawa T, Nishida A. Tetrahedron: Asymmetry 2017; 28: 1083
  • 54 Carbazomycin B Carbazomycin B was synthesized according to a procedure by Nishida and co-workers.28 A solution of anthracene (65 mg, 0.36 mmol) in THF (1.5 mL) was purged with nitrogen for 10 minutes, before sodium metal (13 mg, 0.57 mmol) was added. The suspension was stirred at room temperature for 30 minutes, before being sonicated for a further 20 minutes. The dark blue solution was removed from the sonication bath, and a solution of 3-methoxy-9-((4-methoxyphenyl)sulfonyl)-1,2-dimethyl-9H-carbazol-4-ol (14) (30 mg, 0.073 mmol) in THF (1 mL) was added in one portion. The resulting green solution was stirred at room temperature for 1 hour, before it was diluted with dichloromethane (10 mL), and deionized water (10 mL) was added. The aqueous layer was separated and extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed with deionized water (20 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (10–30% EtOAc/pentane) to afford the title compound (10 mg, 0.041 mmol, 57%) as a white solid. IR (neat): 3425, 3053, 2988, 2923, 2854, 1638, 1612, 1500, 1453, 1411, 1321, 1300, 1144, 1083, 1003 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.25 (m, 1 H), 7.78 (br s, 1 H), 7.43–7.32 (m, 2 H), 7.22 (ddd, J = 8.1, 6.8, 1.4 Hz, 1 H), 6.06 (s, 1 H), 3.83 (s, 3 H), 2.40 (s, 3 H), 2.37 (s, 3 H). 13C{1H} NMR (101 MHz, CDCl3): δ = 142.0, 139.2, 138.4, 136.7, 127.0, 124.8, 123.3, 122.6, 119.5, 110.0, 109.3, 109.3, 61.5, 13.2, 12.8. HRMS (APCI): m/z [M + H]+ calcd for C15H16NO2: 242.1176; found: 242.1182. The spectroscopic data (1H NMR, 13C{1H} NMR and IR) are consistent with the literature.28 Carbazomycin A Carbazomycin A was synthesized according to a procedure by Moody and Shah.26 To a solution of carbazomycin B (8.0 mg, 0.033 mmol) in acetone (2 mL) was added dried potassium carbonate (50 mg, 0.36 mmol) and iodomethane (0.3 mL, 4.8 mmol) sequentially. The resulting reaction mixture was then heated at reflux for 3 hours, before it was allowed to cool to room temperature, and diluted with dichloromethane (5 mL). The organic phase was separated and washed with deionized water (3 × 5 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (10% EtOAc/pentane) to afford the title compound (7.3 mg, 0.029 mmol, 87%) as a yellow oil. IR (neat): 3436, 3351, 2998, 2989, 2930, 1610, 1498, 1455, 1395, 1293, 1088, 1051 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.23 (m, 1 H), 7.83 (s, 1 H), 7.45–7.33 (m, 1 H), 7.22 (ddd, J = 8.0, 6.8, 1.5 Hz, 1 H), 4.11 (s, 1 H), 3.90 (s, 1 H), 2.41 (s, 1 H), 2.39 (s, 1 H). 13C{1H} NMR (101 MHz, CDCl3): δ = 146.0, 144.5, 139.4, 136.4, 128.8, 125.1, 122.9, 122.5, 119.5, 114.4, 113.5, 110.3, 61.1, 60.6, 13.7, 12.6. IR (neat): 3436, 3351, 2998, 2989, 2930, 1610, 1498, 1455, 1395, 1293, 1088, 1051 cm–1. HRMS (APCI): m/z [M + H]+ calcd for C16H18NO2: 256.1332; found: 256.1329. The spectroscopic data (1H NMR, 13C{1H} NMR and IR) are consistent with the literature.28