Klin Monbl Augenheilkd 2016; 233(10): 1142-1148
DOI: 10.1055/s-0042-114042
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Handgehaltene optische Kohärenztomografie in pädiatrischer Ophthalmologie: Erfahrung der Gießener Universitätsaugenklinik

Handheld Optical Coherence Tomography in Paediatric Ophthalmology: Experience of the Department of Ophthalmology in Giessen
W. Bowl
1   Justus-Liebig-Universität Gießen
,
M. Andrassi-Darida
2   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
,
K. Holve
1   Justus-Liebig-Universität Gießen
,
S. Schweinfurth
1   Justus-Liebig-Universität Gießen
,
R. Knobloch
1   Justus-Liebig-Universität Gießen
,
B. Lorenz
1   Justus-Liebig-Universität Gießen
2   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
› Author Affiliations
Further Information

Publication History

eingereicht 22 June 2016

akzeptiert 22 July 2016

Publication Date:
13 September 2016 (online)

Zusammenfassung

Einleitung: Optische Kohärenztomografie ist ein wichtiges Werkzeug zur Darstellung und Analyse retinaler Ultrastrukturen. Allerdings ist die Einsatzmöglichkeit üblicher Standgeräte bei Kindern begrenzt. In unserem Artikel berichten wir über unsere Erfahrungen bei der täglichen Arbeit mit dem handgehaltenen Gerät Bioptigen zur Spectral-Domain optischen Kohärenztomografie (HH-SD-OCT) bei Säuglingen und Kleinkindern der kinderophthalmologischen Ambulanz.

Methoden: Zwischen Oktober 2014 und April 2016 untersuchten wir insgesamt 259 Patienten. Ausgewertet wurden Indikationen und Diagnosen. Einzelne Beispiele verschiedener Patientenfälle werden exemplarisch vorgestellt, um Vor- und Nachteile der neuartigen Technik darzustellen.

Ergebnisse: Mit einer mittleren Untersuchungszeit von 18,3 Minuten (± 8,3 SD) konnten Kinder ab einem Alter von 7 Wochen nicht invasiv untersucht werden (Median: 1,59 Jahre; ± 1,32 SD). Mit 32,8 % aller Fälle waren Beurteilungen im Rahmen einer Frühgeburt die häufigste Indikation zum HH-SD-OCT. Nystagmus, Netzhautdystrophien, reduzierter Visus und Albinismus umfassten weitere 37,4 % aller Indikationen.

Schlussfolgerung: Das handgehaltene OCT ist eine gewinnbringende Ergänzung in der Diagnostik von Erkrankungen in der pädiatrischen Ophthalmologie. Neben bereits etablierten Methoden zur Bildgebung wie dem Kontaktverfahren zur Weitwinkelfundusfotografie ermöglicht das HH-SD-OCT, neue Informationen retinaler Veränderungen objektiv zu dokumentieren und sie im Verlauf weiterzuverfolgen. Bei unruhiger Fixation ist aufgrund des fehlenden Eyetrackings eine Orientierung am hinteren Netzhautpol schwierig und Verlaufsuntersuchungen nur mit zusätzlichem Analyseaufwand möglich.

Abstract

Introduction: Optical coherence tomography is an important tool for the imaging and analysis of retinal structures. The usability of conventional table-top devices is limited in children. We report on our experiences with a handheld Spectral Domain Optical Coherence Tomography (HH-SD-OCT, Bioptigen™) in infants and young children in our daily practice.

Methods: Between October 2014 and April 2016, we investigated 259 patients. Indications and diagnoses were assessed. Individual examples are shown to demonstrate the advantages and disadvantages of the novel technique.

Results: It was possible to examine 259 children of at least 7 weeks of age (median: 1.59 years; ± 1.32 SD) with a mean investigation time of 18.3 minutes (± 8.3 SD). The most frequent indication was retinal assessment in prematures (32.8 %). Nystagmus, retinal dystrophies, reduced visual acuity and albinism amounted to additional 37.4 % of all indications.

Conclusions: Handheld OCT is a beneficial complement for diagnosis of diseases in paediatric ophthalmology. As a complement to established methods like wide-field fundus photography, HH-SD-OCT allows the physician to assess and follow-up new objective structural information. As the Bioptigen does not have an eye tracker, it is challenging to orient the scan in the posterior retinal pole, in particular in case of instable fixation. This complicates follow-up investigations, which can only be performed with additional high programming and analysis effort.

 
  • Literatur

  • 1 Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 2 Puliafito CA, Hee MR, Lin CP et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995; 102: 217-229
  • 3 Mirza RG, Johnson MW, Jampol LM. Optical coherence tomography use in evaluation of the vitreoretinal interface: a review. Surv Ophthalmol 2007; 52: 397-421
  • 4 Stopa M, Bower BA, Davies E et al. Correlation of pathologic features in Spectral Domain Optical Coherence Tomography with conventional retinal studies. Retina 2008; 28: 298-308
  • 5 Vinekar A, Sivakumar M, Shetty R et al. A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity. Eye (Lond) 2010; 24: 379-382
  • 6 Shields CL, Mashayekhi A, Luo CK et al. Optical coherence tomography in children: analysis of 44 eyes with intraocular tumors and simulating conditions. J Pediatr Ophthalmol Strabismus 2004; 41: 338-344
  • 7 Scott AW, Farsiu S, Enyedi LB et al. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol 2009; 147: 364-373
  • 8 Maldonado RS, Izatt JA, Sarin N et al. Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children. Invest Ophthalmol Vis Sci 2010; 51: 2678-2685
  • 9 Izatt JA, Buckland EL, Bower EA, Hart RH. Bioptigen, Inc. Systems for comprehensive fourier domain optical coherence tomography (FDOCT) and related methods. United States patent US8625104 B2. 2010 Okt 22.
  • 10 Ehnes A, Wenner Y, Friedburg C et al. Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation. Transl Vis Sci Technol 2014; 3: 1.eCollection
  • 11 Mohammad S, Gottlob I, Kumar A et al. The functional significance of foveal abnormalities in albinism measured using spectral-domain optical coherence tomography. Ophthalmology 2011; 118: 1645-1652
  • 12 Yang H, Yu T, Sun C et al. Spectral-domain optical coherence tomography in patients with congenital nystagmus. Int J Ophthalmol 2011; 4: 627-630
  • 13 Cronin TH, Hertle RW, Ishikawa H et al. Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus. J AAPOS 2009; 13: 563-566
  • 14 Holmström G, Eriksson U, Hellgren K et al. Optical coherence tomography is helpful in the diagnosis of foveal hypoplasia. Acta Ophthalmol 2010; 88: 439-442
  • 15 DeLori FC, Webb RH, Sliney DH. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis 2007; 24: 1250-1265
  • 16 Sliney D, Aron-Rosa D, DeLori FC et al. Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Appl Opt 2005; 44: 2162-2176
  • 17 Lee H, Proudlock F, Gottlob I. Is handheld optical coherence tomography reliable in infants and young children with and without nystagmus?. Invest Ophthalmol Vis Sci 2013; 54: 8152-8159
  • 18 Gerth C, Zawadski RJ, Heon E et al. High-resolution retinal imaging in young children using a handheld scanner and Fourier-domain optical coherence tomography. J AAPOS 2009; 13: 72-74
  • 19 Altemir I, Pueyo V, Elia N et al. Reproducibility of optical coherence tomography measurements in children. Am J Ophthalmol 2013; 155: 171-176
  • 20 Avery RA, Cnaan A, Schuman JS et al. Reproducibility of circumpapillary retinal nerve fiber layer measurements using handheld optical coherence tomography in sedated children. Am J Ophthalmol 2014; 158: 780-787
  • 21 Langenegger SJ, Funk J, Toteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 2011; 52: 3338-3344
  • 22 Dorn EM, Hendrickson L, Hendrickson AE. The appearance of rod opsin during monkey retinal development. Invest Ophthalmol Vis Sci 1995; 36: 2634-2651
  • 23 Hendrickson A, Kupfer C. The histogenesis of the fovea in the macaque monkey. Invest Ophthalmol Vis Sci 1976; 15: 746-756
  • 24 Hendrickson AE, Youdelis C. The morphological development of the human fovea. Ophthalmology 1984; 91: 603-612
  • 25 Youdelis C, Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. Vision Res 1986; 26: 847-855
  • 26 Maldonado RS, OʼConnell RV, Sarin N et al. Dynamics of human foveal development after premature birth. Ophthalmology 2011; 118: 2315-2325
  • 27 Kriss A, Russel-Eggitt I, Harris CM et al. Aspects of albinism. Ophthalmic Paediatr Genet 1992; 13: 89-100
  • 28 Bouzas EA, Caruso RC, Drews-Bankiewisz MA et al. Evoked potential analysis of visual pathways in human albinism. Ophthalmology 1994; 101: 309-314
  • 29 Soong F, Levin AV, Westall CA. Comparison of techniques for detecting visually evoked potential asymmetry in albinism. J AAPOS 2000; 4: 302-310
  • 30 Cabrera MT, Maldonado RS, Toth CA et al. Subfoveal fluid in healthy full term newborns observed by handheld spectral domain optical coherence tomography. Am J Ophthalmol 2012; 153: 167-175
  • 31 Lee AC, Maldonado RS, Sarin N et al. Macular features from spectral domain optical coherence tomography as an adjunct to indirect ophthalmoscopy in retinopathy of prematurity. Retina 2011; 31: 1470-1482
  • 32 Miciili JA, Surkont M, Smith AF. A systematic analysis of the off-label use of bevacizumab for severe retinopathy of prematurity. Am J Ophthalmol 2009; 148: 536-543
  • 33 Chen J, Smith LE. Retinopathy of prematurity. Angiogenesis 2007; 10: 133-140
  • 34 Hughes LA, May K, Talbot JF et al. Incidence, distribution, and duration of birth-related hemorrhages: a prospective study. J AAPOS 2006; 10: 102-106
  • 35 Bowl W, Lorenz B, Stieger K et al. Correlation of central visual function and ROP risk factors in prematures with and without acute ROP at the age of 6–13 years: the Giessen long-term ROP study. Br J Ophthalmol 2015; [Epub ahead of print]
  • 36 Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res 2015; 138: 32-41
  • 37 Beltran WA, Cideciyan AV, Lewin AS et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A 2012; 109: 2132-2137