Klin Monbl Augenheilkd 2016; 233(09): 1043-1048
DOI: 10.1055/s-0042-101553
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Interpretation pathologischer Veränderungen am vitreoretinalen Interface

Interpretation of Pathological Changes at the Vitreoretinal Interface
A. P. Lommatzsch
Retinologie, Augenabteilung am St. Franziskus Hospital Münster
› Author Affiliations
Further Information

Publication History

eingereicht 14 November 2015

akzeptiert 13 January 2016

Publication Date:
07 April 2016 (online)

Zusammenfassung

Jahrzehntelang bestand bez. der Diagnostik und chirurgischen Behandlung von symptomatischen, pathologischen Veränderungen am vitreomakulären Interface (VMI) Konsens. Durch die Einführung der SD-OCT-Bildgebung wurde das Verständnis pathogenetischer Prozesse an dieser Grenzfläche deutlich vertieft, und es konnten prospektive Faktoren beim makulären Traktionssyndrom, der epiretinalen Membranen (ERM) und auch bei Makulaforamen (MF) definiert werden. Nach der Zulassung von Ocriplasmin zur nicht chirurgischen Behandlung von vitreomakulären Traktionen (VMT) und kleinen MF konnte aufgrund dieser Behandlungsergebnisse und neuer Bildgebungstechniken eine neue Klassifikation erstellt werden. Somit ist eine präzise Trennung physiologischer, altersbedingter Veränderungen am VMI und pathologischer Veränderung möglich. In einer Literatursichtung wird über klinisch relevante Aspekte bei der Diagnostik und Therapie von Erkrankungen am VMI berichtet.

Abstract

For decades there was a general consensus about diagnostic investigations and surgical treatment of symptomatic pathological changes in the vitreomacular interface (VMI). The introduction of SD-OCT imaging helped in the understanding of the pathogenetic processes at this interface and risk factors were defined for the macular traction syndrome, epiretinal membrane (ERM) and macular hole. After approval of ocriplasmin for non-surgical treatment, a new classification based on treatment outcome and new imaging techniques was established. Precise separation of physiological, age-related changes in the VMI and pathological changes was then possible. Clinically relevant aspects in the diagnostic testing and treatment of diseases of the VMI are reported in this literature review.

 
  • Literatur

  • 1 Willis AW. [Surgical treatment of idiopathic macular epiretinal membrane]. Ophthalmologie 1989; 3: 29-30
  • 2 Gass JD. Reappraisal of biomicroscopic classification of stages of development of a macular hole. Am J Ophthalmol 1995; 119: 752-759
  • 3 Gass JD. Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol 1988; 106: 629-639
  • 4 Roth AM, Foos RY. Surface wrinkling retinopathy in eyes enucleated at autopsy. Trans Am Acad Ophthalmol Otolaryngol 1971; 75: 1047-1058
  • 5 Kleinert H. [Primary retinal wrinkling in the macular region]. Albrecht Von Graefes Arch Ophthalmol 1954; 155: 350-358
  • 6 Smiddy WE, Flynn jr. HW. Vitrectomy in the management of diabetic retinopathy. Surv Ophthalmol 1999; 43: 491-507
  • 7 Tanenbaum HL, Schepens CL, Elzeneiny I et al. Macular pucker following retinal surgery. A biomicroscopic study. Can J Ophthalmol 1969; 4: 20-23
  • 8 Machemer R, Parel JM, Buettner H. A new concept for vitreous surgery. I. Instrumentation. Am J Ophthalmol 1972; 73: 1-7
  • 9 Machemer R, Buettner H, Norton EW et al. Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol 1971; 75: 813-820
  • 10 Gaudric A, Haouchine B, Massin P et al. Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol 1999; 117: 744-751
  • 11 Stalmans P, Benz MS, Gandorfer A et al. Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 2012; 367: 606-615
  • 12 Tanner V, Chauhan DS, Jackson TL et al. Optical coherence tomography of the vitreoretinal interface in macular hole formation. Br J Ophthalmol 2001; 85: 1092-1097
  • 13 Schneider EW, Todorich B, Kelly MP et al. Effect of optical coherence tomography scan pattern and density on the detection of full-thickness macular holes. Am J Ophthalmol 2014; 157: 978-984
  • 14 Staurenghi G, Sadda S, Chakravarthy U et al. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN·OCT consensus. Ophthalmology 2014; 121: 1572-1578
  • 15 Chang JS, Flynn jr. HW, Engelbert M et al. Pars plana vitrectomy in patients with myopic macular retinoschisis. Br J Ophthalmol 2014; 98: 534-537
  • 16 Chang JS, Packo KH, Flynn jr. HW. Spontaneous anatomical and visual improvement in myopic macular retinoschisis. Ophthalmic Surg Lasers Imaging Retina 2013; 44: 499-501
  • 17 Jandeck C. [Vitreomacular interface diseases: vitreomacular adhesion, traction, epiretinal membrane, and macular hole]. Klin Monatsbl Augenheilkd 2014; 231: 269-285
  • 18 Mitchell P, Smith W, Chey T et al. Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology 1997; 104: 1033-1040
  • 19 Aung KZ, Makeyeva G, Adams MK et al. The prevalence and risk factors of epiretinal membranes: the Melbourne Collaborative Cohort Study. Retina 2013; 33: 1026-1034
  • 20 Fraser-Bell S, Ying-Lai M, Klein R et al. Prevalence and associations of epiretinal membranes in latinos: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 2004; 45: 1732-1736
  • 21 Koh V, Cheung CY, Wong WL et al. Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci 2012; 53: 1018-1022
  • 22 Duan XR, Liang YB, Friedman DS et al. Prevalence and associations of epiretinal membranes in a rural Chinese adult population: the Handan Eye Study. Invest Ophthalmol Vis Sci 2009; 50: 2018-2023
  • 23 Ng CH, Cheung N, Wang JJ et al. Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology 2011; 118: 694-699
  • 24 Schumann RG, Gandorfer A, Kampik A et al. [Clinicopathological correlations at the vitreoretinal interface]. Ophthalmologe 2015; 112: 20-28
  • 25 Kampik A, Kenyon KR, Michels RG et al. Epiretinal and vitreous membranes. Comparative study of 56 cases. Arch Ophthalmol 1981; 99: 1445-1454
  • 26 Haritoglou C. [Vitreoretinal interface: pathophysiological, morphological and functional aspects]. Ophthalmologe 2015; 112: 8-9
  • 27 Gandorfer A, Haritoglou C, Kampik A et al. Ultrastructure of the vitreoretinal interface following removal of the internal limiting membrane using indocyanine green. Curr Eye Res 2004; 29: 319-320
  • 28 Chang LK, Fine HF, Spaide RF et al. Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol 2008; 146: 121-127
  • 29 Inoue M, Morita S, Watanabe Y et al. Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am J Ophthalmol 2010; 150: 834-839
  • 30 Schumann RG, Hagenau F, Haritoglou C et al. Cells at the vitreoretinal interface in small full-thickness macular holes. Retina 2015; 35: 1158-1165
  • 31 Duker JS, Kaiser PK, Binder S et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 2013; 120: 2611-2619
  • 32 Meuer SM, Myers CE, Klein BE et al. The epidemiology of vitreoretinal interface abnormalities as detected by spectral-domain optical coherence tomography: the beaver dam eye study. Ophthalmology 2015; 122: 787-795
  • 33 Fusi-Rubiano W, Awad M, Manjunath R et al. Spectrum of morphological and visual changes due to vitreomacular interface disorders encountered in a large consecutive cohort of patients. Eye (Lond) 2015; 29: 397-402
  • 34 Jackson TL, Nicod E, Simpson A et al. Symptomatic vitreomacular adhesion. Retina 2013; 33: 1503-1511
  • 35 Dimopoulos S, Bartz-Schmidt KU, Gelisken F et al. Rate and timing of spontaneous resolution in a vitreomacular traction group: should the role of watchful waiting be re-evaluated as an alternative to ocriplasmin therapy?. Br J Ophthalmol 2015; 99: 350-353
  • 36 Weinand F, Jung A, Becker R et al. Spontaneous resolution of vitreomacular traction syndrome. Ophthalmologe 2009; 106: 44-46
  • 37 Theodossiadis GP, Grigoropoulos VG, Theodoropoulou S et al. Spontaneous resolution of vitreomacular traction demonstrated by spectral-domain optical coherence tomography. Am J Ophthalmol 2014; 157: 842-851
  • 38 Zhang Z, Dong F, Zhao C et al. Natural course of vitreomacular traction syndrome observed by spectral-domain optical coherence tomography. Can J Ophthalmol 2015; 50: 172-179
  • 39 Pang CE, Spaide RF, Freund KB. Comparing functional and morphologic characteristics of lamellar macular holes with and without lamellar hole-associated epiretinal proliferation. Retina 2015; 35: 720-726
  • 40 Briand S, Chalifoux E, Tourville E et al. Prospective randomized trial: outcomes of SF6 versus C3F8 in macular hole surgery. Can J Ophthalmol 2015; 50: 95-100
  • 41 Haritoglou C. [Macular hole surgery today–a survey]. Klin Monatsbl Augenheilkd 2007; 224: 755-762
  • 42 MacLaren RE. Development and role of retinal glia in regeneration of ganglion cells following retinal injury. Br J Ophthalmol 1996; 80: 458-464
  • 43 Lindqvist N, Liu Q, Zajadacz J et al. Retinal glial (Müller) cells: sensing and responding to tissue stretch. Invest Ophthalmol Vis Sci 2010; 51: 1683-1690
  • 44 Matet A, Savastano MC, Rispoli M et al. En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal Müller cells. Am J Ophthalmol 2015; 159: 1142-1151
  • 45 Clamp MF, Jumper JM, McDonald HR et al. Sequential en face spectral-domain optical coherence tomographic analysis of macular hole formation. JAMA Ophthalmol 2015; 133: 486-488
  • 46 Lommatzsch AP, Gutfleisch M, Dietzel M et al. [Initial clinical experience in the treatment of vitreomacular traction and macular holes with ocriplasmin]. Klin Monatsbl Augenheilkd 2014; 231: 909-914
  • 47 Sharma P, Juhn A, Houston SK et al. Efficacy of intravitreal ocriplasmin on vitreomacular traction and full-thickness macular holes. Am J Ophthalmol 2015; 159: 861-867
  • 48 Kim BT, Schwartz SG, Smiddy WE et al. Initial outcomes following intravitreal ocriplasmin for treatment of symptomatic vitreomacular adhesion. Ophthalmic Surg Lasers Imaging Retina 2013; 44: 334-343
  • 49 Singh RP, Li A, Bedi R et al. Anatomical and visual outcomes following ocriplasmin treatment for symptomatic vitreomacular traction syndrome. Br J Ophthalmol 2014; 98: 356-360
  • 50 Chatziralli I, Theodossiadis G, Parikakis E et al. Real-life experience after intravitreal ocriplasmin for vitreomacular traction and macular hole: a spectral-domain optical coherence tomography prospective study. Graefes Arch Clin Exp Ophthalmol 2016; 254: 223-233
  • 51 Knudsen VM, Kozak I. A retrospective study of a single practice use of ocriplasmin in the treatment of vitreomacular traction. Saudi J Ophthalmol 2014; 28: 139-144
  • 52 Bartz-Schmidt KU, Bertram B, Bornfeld N et al. [Current Statement of the German Ophthalmological Society, the Retina Society and the Professional Association of German Ophthalmologists for therapeutic intravitreal application of Ocriplasmin (JETREA®) in ophthalmology (May 2013)]. Klin Monatsbl Augenheilkd 2013; 230: 629-634
  • 53 Matsumoto C, Arimura E, Okuyama S et al. Quantification of metamorphopsia in patients with epiretinal membranes. Invest Ophthalmol Vis Sci 2003; 44: 4012-4016
  • 54 Bouwens MD, de Jong F, Mulder P et al. Results of macular pucker surgery: 1- and 5-year follow-up. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1693-1697
  • 55 Maier M, Abraham S, Frank C et al. Ocriplasmin as a treatment option for symptomatic vitreomacular traction with and without macular hole: First clinical experience. Ophthalmologe 2015; 112: 990-994