Klin Monbl Augenheilkd 2016; 233(10): 1124-1141
DOI: 10.1055/s-0042-100474
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Hereditäre Makuladystrophien

Hereditary Macular Dystrophies
A. B. Renner
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg
,
U. Kellner
2   RetinaScience, AugenZentrum Siegburg
› Author Affiliations
Further Information

Publication History

eingereicht 21 November 2015

akzeptiert 18 December 2015

Publication Date:
06 July 2016 (online)

Zusammenfassung

Hereditäre Makuladystrophien gehören zur großen Gruppe der erblichen Netzhauterkrankungen, die durch Mutationen in spezifischen Genen bedingt sind. Sie stellen oft eine diagnostische Herausforderung dar aufgrund der relativen Seltenheit der einzelnen Krankheitsbilder, der ausgeprägten klinischen und genetischen Heterogenität, der eher unspezifischen Sehstörungen und der anfangs oft nur dezenten Fundusveränderungen. Makuladystrophien können sich in jedem Lebensalter manifestieren und beschränken sich im Krankheitsverlauf vorwiegend auf die Makularegion, wobei Fundusveränderungen bis in die mittlere Peripherie möglich sind. Je nach Schwere der zugrunde liegenden Mutation kann es in einigen Fällen zu einem Übergang in eine generalisierte Netzhautdystrophie kommen. Die alleinige Ophthalmoskopie ist zur Diagnosestellung in den meisten Fällen nicht ausreichend. Eine rasche und korrekte Diagnosestellung ist für den Patienten aber von wesentlicher Bedeutung, da er nur dann gezielt beraten, möglichen Hilfsmitteln, Förderungen und ggf. therapeutischen Optionen zugeführt werden kann. Von wesentlicher Bedeutung ist die retinale Bildgebung mit Fundusautofluoreszenz, Nah-Infrarot-Autofluoreszenz und optischer Kohärenztomografie, da diese Verfahren für die einzelnen Makuladystrophien oft charakteristische Veränderungen aufzeigen können, die funduskopisch nicht erkennbar sind. In Fällen von fehlenden morphologischen Veränderungen ist die elektrophysiologische Diagnostik essenziell und erlaubt den Nachweis einer makulären oder generalisierten Netzhautfunktionsstörung. In der molekulargenetischen Diagnostik hat es in den letzten Jahren deutliche Fortschritte gegeben. Durch die Entwicklung der Next-Generation-Sequencing-Technik können nun alle bekannten Gene für Netzhautdystrophien untersucht werden. Somit kann nun in wesentlich mehr Fällen die genetische Ursache identifiziert werden, als es früher der Fall war, wobei eine möglichst korrekte klinische Diagnose jedoch weiterhin von tragender Bedeutung und Voraussetzung für eine gezielte und erfolgreiche genetische Analyse ist. Die Bedeutung einer molekulargenetisch gesicherten Diagnose nimmt stetig zu, denn diese ist Voraussetzung für Betroffene, in Zukunft eventuell an therapeutischen Studien teilnehmen zu können.

Abstract

Hereditary macular dystrophies are part of the group of inherited retinopathies caused by mutations of specific genes. Challenging features are their rarity, enormous clinical and genetic heterogeneity, unspecific visual disturbances, and often only mild initial fundus changes. The onset of macular dystrophies may occur at any age. They manifest in the macular region, whereas fundus changes can reach the mid periphery as well. In some cases, macular dystrophy can progress into generalised retinal dystrophy, depending on the severity of the causative mutations. Funduscopy alone is often insufficient for diagnosis. However, correct diagnosis is essential for the patient for counseling, low vision aids, support, and therapeutic options. Retinal imaging, with fundus autofluorescence, near-infrared autofluorescence and optical coherence tomography, is very important, as it can show typical changes not visible on funduscopy. In cases where morphological changes are absent, retinal dysfunction must be detected by electrophysiological testing. There has been technical progress in molecular genetic testing in recent years. With the development of modern sequencing, an analysis for all known genes of hereditary retinal dystrophies has been established. The genetic defect can now be identified in more cases than before. However, a correct initial clinical diagnosis is still required for successful genetic analysis. The importance of a genetically confirmed diagnosis is increasing, as this is needed for patients who could have the chance in the near future to participate in therapeutic trials.

 
  • Literatur

  • 1 Renner AB, Tillack H, Kraus H et al. Morphology and functional characteristics in adult vitelliform macular dystrophy. Retina 2004; 24: 929-939
  • 2 Burgess R, Millar ID, Leroy BP et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet 2008; 82: 19-31
  • 3 Renner AB. Hereditäre Retinopathien. In: Kellner U, Wachtlin J, Hrsg. Retina. Diagnostik und Therapie der Erkrankungen des hinteren Augenabschnitts. Stuttgart: Thieme; 2008: 297-345
  • 4 Kellner U, Renner AB, Herbst SM et al. Hereditäre Netzhautdystrophien. Klin Monatsbl Augenheilkd 2012; 229: 171-193
  • 5 Kohl S, Biskup S. Genetische Diagnostik bei erblichen Netzhautdystrophien. Klin Monatsbl Augenheilkd 2013; 230: 243-246
  • 6 Sohocki MM, Daiger SP, Bowne SJ et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 2001; 17: 42-51
  • 7 Rüther K, Leo-Kottler B. Diagnostik und Management erblicher Optikusatrophien und Netzhautdegenerationen. Klin Monatsbl Augenheilkd 2008; 225: R143-159
  • 8 Glöckle N, Kohl S, Mohr J et al. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet 2014; 22: 99-104
  • 9 Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Graefes Arch Clin Exp Ophthalmol 1909; 71: 534-550
  • 10 Lois N, Holder GE, Bunce C et al. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch Ophthalmol 2001; 119: 359-369
  • 11 Yatsenko AN, Shroyer NF, Lewis RA et al. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet 2001; 108: 346-355
  • 12 Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology 2003; 110: 1151-1158
  • 13 Lois N, Holder GE, Fitzke FW et al. Intrafamilial variation of phenotype in Stargardt macular dystrophy-Fundus flavimaculatus. Invest Ophthalmol Vis Sci 1999; 40: 2668-2675
  • 14 Bui TV, Han Y, Radu RA et al. Characterization of native retinal fluorophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies. J Biol Chem 2006; 281: 18112-18119
  • 15 Van Huet RA, Bax NM, Westeneng-Van Haaften SC et al. Foveal sparing in Stargardt disease. Invest Ophthalmol Vis Sci 2014; 55: 7467-7478
  • 16 Von Rückmann A, Fitzke FW, Bird AC. In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 1997; 115: 609-615
  • 17 Sparrow JR, Marsiglia M, Allikmets R et al. Flecks in recessive Stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and optical coherence tomography. Invest Ophthalmol Vis Sci 2015; 56: 5029-5039
  • 18 Kellner S, Kellner U, Weber BH et al. Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies. Am J Ophthalmol 2009; 147: 895-902 902.e1
  • 19 Duncker T, Marsiglia M, Lee W et al. Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease. Invest Ophthalmol Vis Sci 2014; 55: 8134-8143
  • 20 Adams JE. Case showing peculiar changes in the macula. Trans Ophthalmol Soc UK 1883; 3: 113
  • 21 Best F. Über eine hereditäre Maculaaffektion. Z Augenheilkunde 1905; 13: 199-212
  • 22 Zanen J, Rausin G. Kyste vitelliform congénital de la macula. Bull Soc Belge Ophtal 1950; 96: 544-549
  • 23 Nordström S. Hereditary macular degeneration – a population survey in the country of Västerbotten, Sweden. Hereditas 1974; 78: 41-62
  • 24 Bitner H, Schatz P, Mizrahi-Meissonnier L et al. Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: data from a national center in Denmark. Am J Ophthalmol 2012; 154: 403-412.e4
  • 25 Renner AB, Tillack H, Kraus H et al. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology 2005; 112: 586-592
  • 26 Booij JC, Boon CJ, van Schooneveld MJ et al. Course of visual decline in relation to the Best1 genotype in vitelliform macular dystrophy. Ophthalmology 2010; 117: 1415-1422
  • 27 Boon CJ, Klevering BJ, den Hollander AI et al. Clinical and genetic heterogeneity in multifocal vitelliform dystrophy. Arch Ophthalmol 2007; 125: 1100-1106
  • 28 Saksens NT, Fleckenstein M, Schmitz-Valckenberg S et al. Macular dystrophies mimicking age-related macular degeneration. Prog Retin Eye Res 2014; 39: 23-57
  • 29 Wabbels B, Preising MN, Kretschmann U et al. Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2006; 244: 1453-1466
  • 30 Boon CJ, Theelen T, Hoefsloot EH et al. Clinical and molecular genetic analysis of best vitelliform macular dystrophy. Retina 2009; 29: 835-847
  • 31 Parodi MB, Iacono P, Del Turco C et al. Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy. Am J Ophthalmol 2014; 158: 1247-1252.e2
  • 32 Ferrara DC, Costa RA, Tsang S et al. Multimodal fundus imaging in Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1377-1386
  • 33 Querques G, Zerbib J, Georges A et al. Multimodal analysis of the progression of Best vitelliform macular dystrophy. Mol Vis 2014; 20: 575-592
  • 34 Gass JD. A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc 1974; 72: 139-156
  • 35 Chowers I, Tiosano L, Audo I et al. Adult-onset foveomacular vitelliform dystrophy: A fresh perspective. Prog Retin Eye Res 2015; 47: 64-85
  • 36 Qerques G, Forte R, Querques L et al. Natural course of adult-onset foveomacular vitelliform dystrophy: a spectral-domain optical coherence tomography analysis. Am J Ophthalmol 2011; 152: 304-313
  • 37 Haas J. Über das Zusammenvorkommen von Veränderungen der Retina und Choroidea. Arch Augenheilkd 1898; 37: 343-348
  • 38 Pagenstecher HE. Über eine unter dem Bilde der Netzhautablösung verlaufende, erbliche Erkrankung der Retina. Graefes Arch Ophthalmol 1913; 86: 457-462
  • 39 Wilczek M. Ein Fall der Netzhautablösung (Retinoschisis) mit einer Öffnung. Z Augenheilkunde 1935; 85: 108-116
  • 40 Jager GM. A hereditary retinal disease. Trans Ophthalmol Soc UK 1953; 73: 617-619
  • 41 Kellner U, Brummer S, Foerster MH et al. X-linked congenital retinoschisis. Graefes Arch Clin Exp Ophthalmol 1990; 228: 432-437
  • 42 The Retinoschisis Consortium. Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis. The Retinoschisis Consortium. Hum Mol Genet 1998; 7: 1185-1192
  • 43 Kim LS, Seiple W, Fishman GA et al. Multifocal ERG findings in carriers of X-linked retinoschisis. Doc Ophthalmol 2007; 114: 21-26
  • 44 Saldana M, Thompson J, Monk E et al. X-linked retinoschisis in a female with a heterozygous RS1 missense mutation. Am J Med Genet A 2007; 143?A: 608-609
  • 45 Mendoza-Londono R, Hiriyanna KT, Bingham EL et al. A Colombian family with X-linked juvenile retinoschisis with three affected females finding of a frameshift mutation. Ophthalmic Genet 1999; 20: 37-43
  • 46 Ali A, Feroze AH, Rizvi ZH et al. Consanguineous marriage resulting in homozygous occurrence of X-linked retinoschisis in girls. Am J Ophthalmol 2003; 136: 767-769
  • 47 Rodriguez FJ, Rodriguez A, Mendoza-Londono R et al. X-linked retinoschisis in three females from the same family: a phenotype-genotype correlation. Retina 2005; 25: 69-74
  • 48 Saleheen D, Ali A, Khanum S et al. Molecular analysis of the XLRS1 gene in 4 females affected with X-linked juvenile retinoschisis. Can J Ophthalmol 2008; 43: 596-599
  • 49 Staffieri SE, Rose L, Chang A et al. Clinical and molecular characterization of females affected by X-linked retinoschisis. Clin Experiment Ophthalmol 2015; 43: 643-647
  • 50 Sato M, Oshika T, Kaji Y et al. Three novel mutations in the X-linked juvenile retinoschisis (XLRS1) gene in 6 Japanese patients, 1 of whom had Turnerʼs syndrome. Ophthalmic Res 2003; 35: 295-300
  • 51 Molday RS, Kellner U, Weber BH. X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog Retin Eye Res 2012; 31: 195-212
  • 52 Tsang SH, Vaclavik V, Bird AC et al. Novel phenotypic and genotypic findings in X-linked retinoschisis. Arch Ophthalmol 2007; 125: 259-267
  • 53 Renner AB, Kellner U, Fiebig B et al. ERG variability in X-linked congenital retinoschisis patients with mutations in the RS1 gene and the diagnostic importance of fundus autofluorescence and OCT. Doc Ophthalmol 2008; 116: 97-109
  • 54 Yu J, Ni Y, Keane PA et al. Foveomacular schisis in juvenile X-linked retinoschisis: an optical coherence tomography study. Am J Ophthalmol 2010; 149: 973-978.e2
  • 55 Wabbels B, Demmler A, Paunescu K et al. Fundus autofluorescence in children and teenagers with hereditary retinal diseases. Graefes Arch Clin Exp Ophthalmol 2006; 244: 36-45
  • 56 Vincent A, Robson AG, Neveu MM et al. A phenotype-genotype correlation study of X-linked retinoschisis. Ophthalmology 2013; 120: 1454-1464
  • 57 Carr RE. Central areolar choroidal dystrophy. Arch Ophthalmol 1965; 73: 32-35
  • 58 Boon CJ, Klevering BJ, Cremers FP et al. Central areolar choroidal dystrophy. Ophthalmology 2009; 116: 771-782 782.e1
  • 59 Renner AB, Fiebig BS, Weber BH et al. Phenotypic variability and long-term follow-up of patients with known and novel PRPH2/RDS gene mutations. Am J Ophthalmol 2009; 147: 518-530.e1
  • 60 Renner AB, Jägle H. Hereditäre Makuladystrophien in der Differenzialdiagnose der AMD. Klin Monatsbl Augenheilkd 2012; 229: 905-909
  • 61 Hoyng CB, Deutman AF. The development of central areolar choroidal dystrophy. Graefes Arch Clin Exp Ophthalmol 1996; 234: 87-93
  • 62 Boon CJ, Jeroen Klevering B, Keunen JE et al. Fundus autofluorescence imaging of retinal dystrophies. Vision Res 2008; 48: 2569-2577
  • 63 Boon CJ, den Hollander AI, Hoyng CB. The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 2008; 27: 213-235
  • 64 Keilhauer CN, Meigen T, Weber BH. Clinical findings in a multigeneration family with autosomal dominant central areolar choroidal dystrophy associated with an Arg195Leu mutation in the peripherin/RDS gene. Arch Ophthalmol 2006; 124: 1020-1027
  • 65 Smailhodzic D, Fleckenstein M, Theelen T et al. Central areolar choroidal dystrophy (CACD) and age-related macular degeneration (AMD): differentiating characteristics in multimodal imaging. Invest Ophthalmol Vis Sci 2011; 52: 8908-8918
  • 66 Marmor MF, Byers B. Pattern dystrophy of the pigment epithelium. Am J Ophthalmol 1977; 83: 32-44
  • 67 Hsieh RC, Fine BS, Lyons JS. Patterned dystrophies of the retinal pigment epithelium. Arch Ophthalmol 1977; 95: 429-435
  • 68 Marmor MF. Pattern Dystrophies. In: Heckenlively JR, Arden GB, eds. Principles and Practice of Clinical Electrophysiology of Vision. 2nd ed. Cambridge, Massachusetts, London: The MIT Press; 2006: 757-761
  • 69 Sears JE, Aaberg sr. TA, Daiger SP et al. Splice site mutation in the peripherin/RDS gene associated with pattern dystrophy of the retina. Am J Ophthalmol 2001; 132: 693-699
  • 70 Boon CJ, van Schooneveld MJ, den Hollander AI et al. Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol 2007; 91: 1504-1511
  • 71 Vincent A, Forster N, Maynes JT. OTX2 mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. J Med Genet 2014; 51: 797-805
  • 72 Vaclavik V, Tran HV, Gaillard MC et al. Pattern dystrophy with high intrafamilial variability associated with Y141C mutation in the peripherin/RDS gene and successful treatment of subfoveal CNV related to multifocal pattern type with anti-VEGF (ranibizumab) intravitreal injections. Retina 2012; 32: 1942-1949
  • 73 Schauwvlieghe PP, Torre KD, Coppieters F. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjogren reticular dystrophy. Retina 2013; 33: 2118-2125
  • 74 Kellner U, Jandeck C, Kraus H et al. Hereditäre Makuladystrophien. Ophthalmologe 1998; 95: 597-601
  • 75 Hannan SR, de Salvo G, Stinghe A et al. Common spectral domain OCT and electrophysiological findings in different pattern dystrophies. Br J Ophthalmol 2013; 97: 605-610
  • 76 Zerbib J, Querques G, Massamba N et al. Reticular pattern dystrophy of the retina: a spectral-domain optical coherence tomography analysis. Am J Ophthalmol 2013; 156: 1228-1237
  • 77 Piguet B, Haimovici R, Bird AC. Dominantly inherited drusen represent more than one disorder: a historical review. Eye (Lond) 1995; 9: 34-41
  • 78 Hutchinson J, Tay W. Symmetrical central choroidoretinal disease occuring in senile persons. R London Ophthalmol Hosp Rep 1875; 8: 231-244
  • 79 Doyne RW. A peculiar condition of choroiditis occuring in several members of the same family. Trans Ophthalmol Soc UK 1899; 19: 71
  • 80 Vogt A. Die Ophthalmoskopie im rotfreien Licht. In: Graefe A, Saemisch T, Hrsg. Handbuch der gesammten Augenheilkunde. Untersuchungsmethoden. 3. Aufl. Leipzig: Wilhelm Engelmann; 1925: 1-118
  • 81 Deutman AF, Jansen LM. Dominantly inherited drusen of Bruchʼs membrane. Br J Ophthalmol 1970; 54: 373-382
  • 82 Stone EM, Lotery AJ, Munier FL et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 1999; 22: 199-202
  • 83 Michaelides M, Jenkins SA, Brantley jr. MA et al. Maculopathy due to the R345 W substitution in fibulin-3: distinct clinical features, disease variability, and extent of retinal dysfunction. Invest Ophthalmol Vis Sci 2006; 47: 3085-3097
  • 84 Gerth C, Zawadzki RJ, Werner JS et al. Retinal microstructure in patients with EFEMP1 retinal dystrophy evaluated by Fourier domain OCT. Eye (Lond) 2009; 23: 480-483
  • 85 Querques G, Guigui B, Leveziel N et al. Multimodal morphological and functional characterization of Malattia Leventinese. Graefes Arch Clin Exp Ophthalmol 2013; 251: 705-714
  • 86 Haimovici R, Wroblewski J, Piguet B et al. Symptomatic abnormalities of dark adaptation in patients with EFEMP1 retinal dystrophy (Malattia Leventinese/Doyne honeycomb retinal dystrophy). Eye (Lond) 2002; 16: 7-15
  • 87 Takeuchi T, Hayashi T, Bedell M et al. A novel haplotype with the R345 W mutation in the EFEMP1 gene associated with autosomal dominant drusen in a Japanese family. Invest Ophthalmol Vis Sci 2010; 51: 1643-1650
  • 88 Lefler WH, Wadsworth JA, Sidbury jr. JB et al. Hereditary macular degeneration and amino-aciduria. Am J Ophthalmol 1971; 71: 224-230
  • 89 Gass JDM. Stereoscopic Atlas of Macular Diseases. 3rd. ed. St. Louis: Mosby; 1987
  • 90 Frank HR, Landers MB, Williams RJ et al. A new dominant progressive foveal dystrophy. Am J Ophthalmol 1974; 78: 903-916
  • 91 Small KW, Killian J, McLean WC. North Carolinaʼs dominant progressive foveal dystrophy: how progressive is it?. Br J Ophthalmol 1991; 75: 401-406
  • 92 Small KW, Weber JL, Roses A et al. North Carolina macular dystrophy is assigned to chromosome 6. Genomics 1992; 13: 681-685
  • 93 Rosenberg T, Roos B, Johnsen T et al. Clinical and genetic characterization of a Danish family with North Carolina macular dystrophy. Mol Vis 2010; 16: 2659-2668
  • 94 Small KW. North Carolina macular dystrophy: clinical features, genealogy, and genetic linkage analysis. Trans Am Ophthalmol Soc 1998; 96: 925-961
  • 95 Kiernan DF, Shah RJ, Hariprasad SM et al. Thirty-Year follow-up of an African American family with macular dystrophy of the retina, locus 1 (North Carolina macular dystrophy). Ophthalmology 2011; 118: 1435-1443
  • 96 Reichel MB, Kelsell RE, Fan J et al. Phenotype of a British North Carolina macular dystrophy family linked to chromosome 6 q. Br J Ophthalmol 1998; 82: 1162-1168
  • 97 Khurana RN, Sun X, Pearson E et al. A reappraisal of the clinical spectrum of North Carolina macular dystrophy. Ophthalmology 2009; 116: 1976-1983
  • 98 Szlyk JP, Paliga J, Seiple W et al. Comprehensive functional vision assessment of patients with North Carolina macular dystrophy (MCDR1). Retina 2005; 25: 489-497
  • 99 Gekeler F, Zrenner E, Bartz-Schmidt KU. Okuläre elektrische Stimulation. Therapeutische Anwendung und aktive retinale Implantate bei hereditären Netzhautdegenerationen. Ophthalmologe 2015; 112: 712-719
  • 100 Bellingrath JS, Fischer MD. Gentherapie als Behandlungskonzept für erbliche Netzhauterkrankungen. Ophthalmologe 2015; 112: 720-727
  • 101 Balmer J, Stanzel BV, Fischer MD. Stammzelltherapie für Netzhauterkrankungen. Ophthalmologe 2015; 112: 728-737
  • 102 Thompson DA, Ali RR, Banin E et al. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 2015; 56: 918-931
  • 103 Poloschek CM, Jägle H. Pharmakologische Ansätze in der Therapie erblicher Netzhautdegenerationen. Ophthalmologe 2012; 109: 112-120
  • 104 Charbel Issa P, Barnard AR, Herrmann P et al. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci USA 2015; 112: 8415-8420
  • 105 Apushkin MA, Fishman GA. Use of dorzolamide for patients with X-linked retinoschisis. Retina 2006; 26: 741-745
  • 106 Saksens NT, van Huet RA, van Lith-Verhoeven JJ et al. Dominant cystoid macular dystrophy. Ophthalmology 2015; 122: 180-191