Synthesis
DOI: 10.1055/s-0041-1737413
paper

Telescoped Continuous Flow Synthesis of 2-Substituted 1,4-Benzoquinones via Oxidative Dearomatisation of para-Substituted Phenols Using Singlet Oxygen in Supercritical CO2

Bruna L. Abreu
,
Hamza Boufroura
,
,
Martyn Poliakoff
,
Michael W. George
This research was funded by EPSRC grant (EP/P013341/1) and B.L.A. was supported by the University of Nottingham Vice-Chancellor’s Scholarship for Research Excellence (International).


Abstract

This paper describes a continuous multi-step synthesis in supercritical CO2. A continuous flow synthesis of 2-substituted 1,4-benzoquinones is reported, and details of the high-pressure reactors are given. This proceeds via the telescoped dearomatisation of p-substituted phenols using singlet oxygen in supercritical CO2 and an acid-mediated C–C migration. The process has a short residence time of 30 minutes, with overall yields and projected productivities of up to 83% and 9 g/day, respectively. This methodology enables a safe and efficient synthesis of 2-substituted 1,4-benzoquinones from photo-generated singlet oxygen, and cheap and readily available p-substituted phenols. The procedure has high atom efficiency, low photocatalyst loading, and substitutes potentially hazardous and corrosive reagents and solvents for molecular oxygen, CO2, and the less hazardous solid-supported acid Amberlyst-15.

Supporting Information



Publication History

Received: 24 January 2022

Accepted after revision: 28 February 2022

Article published online:
12 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Carreño MC, González-López M, Urbano A. Angew. Chem. Int. Ed. 2006; 45: 2737
  • 2 Adam W, Kazakov DV, Kazakov VP. Chem. Rev. 2005; 105: 3371
  • 3 Pibiri I, Buscemi S, Piccionello AP, Pace A. ChemPhotoChem 2018; 2: 535
  • 4 Ghogare AA, Greer A. Chem. Rev. 2016; 116: 9994
  • 5 Bourne RA, Han X, Poliakoff M, George MW. Angew. Chem. Int. Ed. 2009; 48: 5322
  • 6 Worrall DR, Abdel-Shafi AA, Wilkinson F. J. Phys. Chem. A 2001; 105: 1270
  • 7 Foote CS, Clennan EL. In Active Oxygen in Chemistry . Foote CS, Valentine JS, Greenberg A, Liebman JF. Springer; Dordrecht: 1995: 105
  • 8 Bourne RA, Han X, Chapman AO, Arrowsmith NJ, Kawanami H, Poliakoff M, George MW. Chem. Commun. 2008; 4457
  • 9 Han X, Bourne RA, Poliakoff M, George MW. Chem. Sci. 2011; 2: 1059
  • 10 Hall JF. B, Han X, Poliakoff M, Bourne RA, George MW. Chem. Commun. 2012; 48: 3073
  • 11 Hall JF. B, Bourne RA, Han X, Earley JH, Poliakoff M, George MW. Green Chem. 2013; 15: 177
  • 12 Amara Z, Bellamy JF. B, Horvath R, Miller SJ, Beeby A, Burgard A, Rossen K, Poliakoff M, George MW. Nat. Chem. 2015; 7: 489
  • 13 Wu LQ, Abada Z, Lee DS, Poliakoff M, George MW. Tetrahedron 2018; 74: 3107
  • 14 Wu LQ, Lee DS, Boufroura H, Poliakoff M, George MW. ChemPhotoChem 2018; 2: 580
  • 15 Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
  • 16 Zheng C, You S.-L. ACS Cent. Sci. 2021; 7: 432
  • 17 Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467
  • 18 Fan R, Ding Q, Ye Y. Synthesis 2012; 45: 1
  • 19 Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
  • 20 Baker Dockrey SA, Lukowski AL, Becker MR, Narayan AR. H. Nat. Chem. 2018; 10: 119
  • 21 Quideau S, Pouységu L, Peixoto PA, Deffieux D. In Hypervalent Iodine Chemistry 2016; 25
  • 22 Zheng C, You S.-L. Chem 2016; 1: 830
  • 23 Murahashi SI, Miyaguchi N, Noda S, Naota T, Fujii A, Inubushi Y, Komiya N. Eur. J. Org. Chem. 2011; 5355
  • 24 Dohi T, Kita Y. Chem. Commun. 2009; 2073
  • 25 Ludwig JR, Schindler CS. Chem 2017; 2: 313
  • 26 Péault L, Nun P, Le Grognec E, Coeffard V. Chem. Commun. 2019; 55: 7398
  • 27 Hone CR. A, Kappe CO. Top. Curr. Chem. 2020; 377: 67
  • 28 Gast S, Matthies JH, Tuttlies US, Nieken U. Chem. Eng. Technol. 2017; 40: 1445
  • 29 Dussault P. Working with organic peroxides in the academic lab. In Organic Peroxides: Safety Issues. University of Nebraska; Digital Commons: 2018. (accessed March 31, 2022) http://digitalcommons.unl.edu/chemistryperoxides
  • 30 Battino R, Rettich TR, Tominaga T. J. Phys. Chem. Ref. Data 1983; 12: 163
  • 31 Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
  • 32 Di Filippo M, Bracken C, Baumann M. Molecules 2020; 25: 356
  • 33 Dallinger D, Gutmann B, Kappe CO. Acc. Chem. Res. 2020; 53: 1330
  • 34 Wu L, Abreu BL, Blake AJ, Taylor LJ, Argent SP, Poliakoff M, Boufroura H, George MW. Org. Process Res. Dev. 2021; 25: 1873
  • 35 Olliaro PL, Haynes RK, Meunier B, Yuthavong Y. Trends Parasitol. 2001; 17: 122
  • 36 Lévesque F, Seeberger PH. Angew. Chem. Int. Ed. 2012; 51: 1706
  • 37 Kuete V, Efferth T. J. Ethnopharmacol. 2011; 137: 752
  • 38 Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W, Tong S. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: E1578
  • 39 Yıldırım H. J. Mol. Struct. 2020; 1203: 127433
  • 40 Aussel L, Pierrel F, Loiseau L, Lombard M, Fontecave M, Barras F. Biochim. Biophys. Acta Bioenerg. 2014; 1837: 1004
  • 41 Lee C.-S. Mol. Cells 2000; 10: 723
  • 42 Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N, Sihanonta P, Chaichit N. J. Nat. Prod. 2007; 70: 1620
  • 43 Sagnou M, Strongilos A, Hadjipavlou-Litina D, Couladouros E. Lett. Drug Des. Discov. 2009; 6: 172
  • 44 Belardi JK, Micalizio GC. Org. Lett. 2006; 8: 2409
  • 45 Nawrat CC, Moody CJ. Angew. Chem. Int. Ed. 2014; 53: 2056
  • 46 Vasu D, Fuentes de Arriba AL, Leitch JA, de Gomberta A, Dixon DJ. Chem. Sci. 2019; 10: 3401
  • 47 Salazar CA, Flesch KN, Haines BE, Zhou PS, Musaev DG, Stahl SS. Science 2020; 370: 1454
  • 48 Er S, Suh C, Marshak MP, Aspuru-Guzik A. Chem. Sci. 2015; 6: 885
  • 49 Abraham I, Joshi R, Pardasani P, Pardasani RT. J. Braz. Chem. Soc. 2011; 22: 385
  • 50 Uliana M, Vieira Y, Maria C, Donatoni A, Corrêa U, Brocksom T, Brocksom U. J. Braz. Chem. Soc. 2008; 19: 1484
  • 51 Murahashi SI, Naota T, Miyaguchi N, Noda S. J. Am. Chem. Soc. 1996; 118: 2509
  • 52 Murahashi S.-I, Fujii A, Inubushi Y, Komiya N. Tetrahedron Lett. 2010; 51: 2339