Synlett 2021; 32(14): 1469-1472
DOI: 10.1055/s-0040-1720348
letter

Efficient Construction of (±)-epi-Costunolide through a Chromium(II)-Mediated Nozaki–Hiyama–Kishi Reaction

Weichen Dai
a   Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. of China
b   Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, P. R. of China
,
Jie Zheng
a   Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. of China
,
Xinyu Yan
a   Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. of China
,
Wei Tang
c   Pharmaron (Ningbo) Technology Development Co., Ltd, Ningbo, 315336, P. R. of China
,
Lihong Hu
a   Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. of China
,
Yinan Zhang
a   Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (grants: 21877062, YZ; 81803342, LH), the key research projects of Jiangsu Higher Education (No. 18KJA360010, YZ), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant: 18KJD360001).


Abstract

(±)-epi-Costunolide has been synthesized through a seven-step procedure starting from (E,E)-farnesol. The key step includes an intramolecular allylation of an aldehyde through a chromium(II)-mediated Nozaki–Hiyama–Kishi reaction, in which more than one equivalent of CrCl2 has been recognized as the most effective reagent to promote the conversion. An anti-inflammatory screen showed that epi-costunolide is a moderate inhibitor of B lymphocyte proliferation.

Supporting Information



Publication History

Received: 07 June 2021

Accepted after revision: 25 June 2021

Article published online:
13 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Scarponi C, Butturini E, Sestito R, Madonna S, Cavani A, Mariotto S, Albanesi C. PLoS One 2014; 9: e107904
    • 1b Zheng H, Chen Y, Zhang J, Wang L, Jin Z, Huang H, Man S, Gao W. Chem.–Biol. Interact. 2016; 250: 68
    • 2a Luna-Herrera J, Costa M, González H, Rodrigues A, Castilho P. J. Antimicrob. Chemother. 2007; 59: 548
    • 2b Park J.-B, Lee C.-K, Park H.-J. Arch. Pharmacal Res 1997; 20: 275
    • 2c Duraipandiyan V, Al-Harbi NA, Ignacimuthu S, Muthukumar C. BMC Complementary Altern. Med. 2012; 12: 13
    • 3a Bocca C, Gabriel L, Bozzo F, Miglietta A. Chem.–Biol. Interact. 2004; 147: 79
    • 3b Cai H, He X, Yang C. Phytother. Res. 2018; 32: 1764
    • 3c Dong G.-Z, Shim A.-R, Hyeon JS, Lee HJ, Ryu J.-H. Phytother. Res. 2015; 29: 680
    • 3d Hsu J.-L, Pan S.-L, Ho Y.-F, Hwang T.-L, Kung F.-L, Guh J.-H. J. Urol (N. Y., NY U. S.) 2011; 185: 1967
    • 3e Liu C.-Y, Chang H.-S, Chen I.-S, Chen C.-J, Hsu M.-L, Fu S.-L, Chen Y.-J. Radiat. Oncol. 2011; 6: 56
    • 4a Macías FA, Galindo JC. G, Massanet GM. Phytochemistry 1992; 31: 1969
    • 4b Barrero AF, Oltra JE, Cuerva JM, Rosales A. J. Org. Chem. 2002; 67: 2566
    • 4c Macías FA, Velasco RF, Álvarez JA, Castellano D, Galindo JC. G. Tetrahedron 2004; 60: 8477
    • 4d Srivastava SK, Abraham A, Bhat B, Jaggi M, Singh AT, Sanna VK, Singh G, Agarwal SK, Mukherjee R, Burman AC. Bioorg. Med. Chem. Lett. 2006; 16: 4195
    • 4e Vadaparthi PR. R, Kumar CP, Kumar K, Venkanna A, Nayak VL, Ramakrishna S, Babu KS. Med. Chem. Res. 2015; 24: 2871
  • 5 Grieco PA, Nishizawa M. J. Org. Chem. 1977; 42: 1717
  • 6 Takahashi T, Nemoto H, Kanda Y, Tsuji J, Fujise Y. J. Org. Chem. 1986; 51: 4315
  • 7 Yang Z.-J, Ge W.-Z, Li Q.-Y, Lu Y, Gong J.-M, Kuang B.-J, Xi X, Wu H, Zhang Q, Chen Y. J. Med. Chem 2015; 58: 7007
  • 8 Hirotaka S, Kazuyoshi O, Keiko K, Kazuyuki H, Nobutoshi M, Isao K. Chem. Lett. 1986; 85
  • 9 Reddy DS, Corey EJ. J. Am. Chem. Soc. 2018; 140: 16909
  • 10 Fürstner A, Shi N. J. Am. Chem. Soc 1996; 118: 12349
  • 11 Bryan VJ, Chan T.-H. Tetrahedron Lett. 1996; 37: 5341
  • 12 Semmelhack MF, Wu ES. C. J. Am. Chem. Soc 1976; 98: 3384
  • 13 Masuyama Y, Suga T, Watabe A, Kurusu Y. Tetrahedron Lett 2003; 44: 2845
    • 14a Verdone JA, Mangravite JA, Scarpa NM, Kuivila HG. J. Am. Chem. Soc 1975; 97: 843
    • 14b Matarasso-Tchiroukhine E, Cadiot P. J. Organomet. Chem. 1976; 121: 155
  • 15 Intramolecular Allylation of Compound 1A solution of the aldehyde 1 (94 mg, 0.273 mmol) in anhyd DMF (2.5 mL) was added to a solution of CrCl2 (235 mg, 1.9 mmol) in anhyd DMF (12 mL) at rt under Ar. The mixture was stirred for 3 h and then the reaction was quenched with H2O (8 mL). The mixture was extracted with EtOAc, and the combined organic layers were washed with brine, dried (Na2SO4), and concentrated under a reduced pressure. The residue was purified by column chromatography (silica gel, 5% EtOAc–hexane) to give 11 as a colorless oil; yield: 54.5 mg (0.208 mmol, 76%).1H NMR (500 MHz, CDCl3): δ = 6.36–6.29 (m, 1 H), 5.78–5.74 (m, 1 H), 5.13–4.98 (m, 2 H), 4.41–4.40 (m, 1 H), 3.80 (s, 3 H), 2.76–2.52 (m, 2 H), 2.43–2.33 (m, 2 H), 2.22–2.19 (m, 1 H), 2.13 (d, J = 9.3 Hz, 3 H), 2.02–1.84 (m, 1 H), 1.78–1.69 (m, 2 H), 1.59 (s, 3 H), 1.44–1.40 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 168.7, 142.7, 138.7, 137.4, 126.7, 124.3, 122.1, 70.3, 52.2, 44.3, 40.0, 37.3, 34.9, 25.6, 21.0, 17.0. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C16H24NaO3: 287.1623; found: 287.1618
  • 16 Azarken R, Guerra FM, Moreno-Dorado FJ, Jorge ZD, Massanet GM. Tetrahedron 2008; 64: 10896