Synlett 2022; 33(06): 575-580
DOI: 10.1055/s-0040-1719875
new tools

Strategies for ortho-tert-Butylation of Phenols and their Analogues

Kazaf KC Chan
,
Thomas R. R. Pettus
KC Chan acknowledges support provided by University of California, Santa Barbara Graduate Opportunity Fellowship and Graduate Division Dissertation Fellowship. T. R. R Pettus acknowledges support provided by a University Faculty Grant for this work.


Abstract

A new general process for constructing ortho-tert-butyl phenols is presented within the context of other known methods. All are briefly evaluated with regards to regioselectivity, efficiency, and functional group tolerance. In addition, we present an assortment of tert-butyl substrates accessed through o-QM chemistry. Our conclusion is that the o-QM process provides greater yields, flexibility, and generality than most other known methods for delivering ortho-tert-buytlated phenols and their derivatives.

1 Introduction

2 Friedel–Crafts Alkylation

3 Addition of t-Bu or t-Bu to Carbonyl Compounds

4 ipso-SNAr Reactions of Aryl Methoxy and tert-Butylsulfoxide Moieties

5 Metal-Mediated Coupling of Aryl Bromides

6 Applications of o-Quinone Methides (o-QMs)

7 Conclusion

Supporting Information



Publication History

Received: 22 November 2021

Accepted after revision: 06 January 2022

Article published online:
28 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Barnes-Seeman D, Jain M, Bell L, Ferreira S, Cohen S, Chen X.-H, Amin J, Snodgrass B, Hatsis P. ACS Med. Chem. Lett. 2013; 4: 514
  • 2 Randolph JT, Krueger AC, Donner PL, Pratt JK, Liu D, Motter CE, Rockway TW, Tufano MD, Wagner R, Lim HB, Beyer JM, Mondal R, Panchal NS, Colletti L, Liu Y, Koev G, Kati WM, Hernandez LE, Beno DW. A, Longenecker KL, Stewart KD, Dumas EO, Molla A, Maring CJ. J. Med. Chem. 2018; 61: 1153
    • 3a Talamas FX, Abbot SC, Anand S, Brameld KA, Carter DS, Chen J, Davis D, de Vincent J, Fung AD, Gong L, Harris SF, Inbar P, Labadie SS, Lee EK, Lemoine R, Le Pogam S, Leveque V, Li J, McIntosh J, Nájera I, Park J, Railkar A, Rajyaguru S, Sangi M, Schoenfeld RC, Staben LR, Tan Y, Taygerly JP, Villaseñor AG, Weller PE. J. Med. Chem. 2014; 57: 1914
    • 3b Pi Z, Sutton J, Lloyd J, Hua J, Price L, Wu Q, Chang M, Zheng J, Rehfuss R, Huang CS, Wexler RR, Lam PY. S. Bioorg. Med. Chem. Lett. 2013; 23: 4206
  • 4 Hadia S, Van Goor F, Zhou J, Arumugam V, McCartney J, Hazlewood A, Decker C, Negulescu P, Grootenhuis PD. J. J. Med. Chem. 2014; 57: 9776
    • 5a Chaudhuri B, Sharma MM. Ind. Eng. Chem. Res. 1991; 30: 227
    • 5b Hart H. J. Am. Chem. Soc. 1949; 71: 1966
    • 5c Kamitori Y, Hojo M, Masuda R, Izumi T, Tsukamoto S. J. Org. Chem. 1984; 49: 4161
    • 5d Gagea BC, Parvulescu AN, Parvulescu VI, Auroux A, Grange P, Poncelet G. Catal. Lett. 2003; 91: 141
    • 5e Gagea BC, Pârvulescu AN, Poncelet G, Pârvulescu VI. Catal. Lett. 2005; 105: 219
    • 5f Pezzotta C, Fleury G, Soetens M, Van der Perre S, Denayer JF. M, Riant O, Gaigneaux EM. J. Catal. 2018; 359: 198
  • 6 Zambia RA, Caldwell CG, Kopka IE, Hammond ML. J. Org. Chem. 1988; 53: 4135
  • 7 Barton DH. R, Sas W. Tetrahedron 1990; 46: 3419
    • 8a Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Del Bel M, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292
    • 8b Hamsath A, Galloway JD, Baxter RD. Synthesis 2018; 50: 2915
    • 8c Galloway JD, Mai DN, Baxter RD. Org. Lett. 2017; 19: 5772
  • 9 Richtzenhain H, Nippus P. Chem. Ber. 1949; 82: 408 ; and references cited therein
    • 10a Meyers AI, Mihelich ED. J. Am. Chem. Soc. 1975; 97: 7383
    • 10b Meyers AI, Gabel R, Mihelich ED. J. Org. Chem. 1978; 43: 1372
    • 10c Meyers AI, Williams BE. Tetrahedron Lett. 1978; 3: 223
  • 11 Clayden J, Stimson CC, Keenan M. Chem. Commun. 2006; 1393
    • 12a Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
    • 12b Glorius F. Angew. Chem. Int. Ed. 2008; 47: 8347
    • 12c Terao J, Naitoh Y, Kuniyasu H, Kambe N. Chem. Commun. 2007; 825
    • 12d Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 12e Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
    • 12f Terao J, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2003; 125: 5646
    • 12g Vechorkin O, Proust V, Hu X. J. Am. Chem. Soc. 2009; 131: 9756

    • For organozinc reagents, see:
    • 12h Cahiez G, Foulgoc L, Moyeux A. Angew. Chem. Int. Ed. 2009; 48: 2969

    • For organocopper reagents, see:
    • 12i Langlois J.-B, Alexakis A. Chem. Commun. 2009; 3868

    • For organomagnesium reagents, see:
    • 12j Hayashi T, Konishi M, Yokota K, Kumada M. Chem. Lett. 1980; 767
    • 12k Cahiez G, Avedissian H. Synthesis 1998; 1199
    • 12l Bell TW, Hu L.-Y, Patel SV. J. Org. Chem. 1987; 52: 3847
    • 12m Hintermann L, Xiao L, Labonne A. Angew. Chem. Int. Ed. 2008; 47: 8246
    • 12n Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245

    • For chromium, see:
    • 12o Liu P, Chen C, Cong X, Tang J, Zheng X. Nat. Commun. 2018; 9: 4637
  • 13 Lohre C, Dröge T, Wang C, Glorius F. Chem. Eur. J. 2011; 17: 6052
  • 14 Ando S, Mawatari M, Matsunaga H, Ishizuka T. Tetrahedron Lett. 2016; 57: 3287
  • 15 For ortho bromination of a phenol, see: Pearson DE, Wysong RD, Breder CV. J. Org. Chem. 1967; 32: 2358
    • 16a Van De Water RW, Magdziak D, Chau JN, Pettus TR. R. J. Am. Chem. Soc. 2000; 122: 6502
    • 16b Jones RM, Van De Water RW, Lindsey CC, Hoarau C, Ung T, Pettus TR. R. J. Org. Chem. 2001; 66: 3435
    • 16c Green JC, Pettus TR. R. J. Am. Chem. Soc. 2011; 133: 1603
    • 16d Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
  • 17 Looker AR, Wilde N, Ryan MP, Roeper S, Ye Z, Lewandowski BL. J. Org. Chem. 2020; 85: 501
  • 18 Representative Procedure To dry nitrogen-flushed 10 mL Schlenk flask, equipped with a magnetic stir bar, was charged with SI-1 (100 mg) in dry Et2O (3.8 mL, 0.1 M) and MeMgCl (0.42 mL, 2.69 M, 1.13 mmol, 3.0 equivalent) was added dropwise at –78 °C. The reaction was allowed to slowly warm to room temperature overnight. The reaction was quenched with 1 M aq. NH4Cl (3 mL) and extracted with Et2O (4 × 1 mL). The combined organic fractions were washed with brine (5 mL), dried over Na2SO4, and concentrated in vacuo. The crude product was purified by flash chromatography (ethyl acetate–hexane, 1:9) to yield the tert-butylated phenol 23 (56.9 mg, 84% isolated yield). 1H NMR (500 MHz, CDCl3): δ = 6.91 (dd, J = 6.7, 2.8 Hz, 1H), 6.82–6.74 (m, 2 H), 6.01 (s, OH), 3.89 (s, 3 H), 1.42 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 146.82, 144.43, 135.75, 119.19, 118.81, 108.58, 56.28, 34.78, 29.54. HRMS (EI+): m/z calcd for C11H16O2 [M+]: 180.1150; found: 180.1149.
  • 19 Preparations of the acetophenones are all fully described in the Supporting Information.