Synthesis 2020; 52(16): 2373-2378
DOI: 10.1055/s-0040-1708020
paper
© Georg Thieme Verlag Stuttgart · New York

Further Development of the Tin-Catalyzed Transcarbamoylation Reaction

Yoshiyasu Ichikawa
a  Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Tomoyuki Hasegawa
a  Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Takahiro Minami
a  Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Hiroshi Sato
a  Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Yukinori Morishita
a  Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Rika Ochi
a  Faculty of Science, Kochi University, Akebono-cho Kochi 780-8520, Japan   Email: ichikawa@kochi-u.ac.jp
,
Toshiya Masuda
b  Graduate School of Human Life Science, Osaka City University, Osaka 558-8585, Japan
› Author Affiliations
Further Information

Publication History

Received: 18 March 2020

Accepted after revision: 31 March 2020

Publication Date:
20 April 2020 (online)


Abstract

Studies carried out to further develop tin-catalyzed trans­carbamoylation reactions demonstrated that transcarbamoylation of cinnamyl alcohol in the context of allyl cyanate-to-isocyanate rearrangement can be efficiently carried out on a ten-gram scale and that tin-­catalyzed transcarbamoylation is a valuable alternative to the method using trichloroacetyl isocyanate. In addition, methyl carbamate was found to be an economical carabamoyl donor in tin-catalyzed transcarbamoylation, which showed broad functional group tolerance and allowed a streamlined workup procedure. Finally, a unique synthetic method was developed for the preparation of carbamate-tethered terpene glycoconjugates.

Supporting Information

 
  • References and Notes

  • 1 Ghosh AK, Brindisi M. J. Med. Chem. 2015; 58: 2895
  • 2 Minami N, Ko SS, Kishi Y. J. Am. Chem. Soc. 1982; 104: 1109
  • 3 Hirama M, Shigemoto T, Yamazaki Y, Ito S. J. Am. Chem. Soc. 1985; 107: 1797
  • 4 Donohoe TJ, Johnson PD, Cowley A, Keenan M. J. Am. Chem. Soc. 2002; 124: 12934
  • 5 Espino CG, Du Bois J. Angew. Chem. Int. Ed. 2001; 40: 598
    • 6a Ichikawa Y. Synlett 1991; 238
    • 6b Ichikawa Y. Synlett 2007; 2927
  • 7 Ichikawa Y, Kariya N, Hasegawa T. Org. Synth. 2013; 90: 271
    • 8a Hirama M, Uei M. Tetrahedron Lett. 1982; 23: 5307
    • 8b Kočovský P. Tetrahedron Lett. 1986; 27: 5521
    • 9a Ichikawa Y, Morishita Y, Kusaba S, Sakiyama N, Matsuda Y, Nakano K, Kotsuki H. Synlett 2010; 1815

    • For transcarbamoylation reactions using bismuth or lanthanum(II) catalysts, see:
    • 9b Jousseaume B, Laporte C, Toupance T, Bernard JM. Tetrahedron Lett. 2002; 43: 6305
    • 9c Hatano M, Kamiya S, Moriyama K, Ishihara K. Org. Lett. 2011; 13: 430
  • 10 During the current study, Stecko reported the use of tin-catalyzed transcarbamoylation for the preparation of β-alkyl-β-aryl-disubstituted allyl carbamate, which were transformed into allyl amines and amino acids bearing quaternary stereocenters by using allyl cyanate-to-isocyanate rearrangement. See: Narczyk A, Pieczykolan M, Stecko S. Org. Biomol. Chem. 2018; 16: 3921
    • 11a Campagna F, Carotti A, Casini G. Tetrahedron Lett. 1977; 1813
    • 11b Roy S, Spino C. Org. Lett. 2006; 8: 939
    • 11c Toma T, Kita Y, Fukuyama T. J. Am. Chem. Soc. 2010; 132: 10233
  • 12 Otera J. Chem. Rev. 1993; 93: 1449
  • 13 Gamblin DP, Scanlan EM, Davis BG. Chem. Rev. 2009; 109: 131
  • 14 Ichikawa Y, Nishiyama T, Isobe M. Tetrahedron 2004; 60: 2621