Synlett 2020; 31(11): 1073-1076
DOI: 10.1055/s-0040-1708016
letter
© Georg Thieme Verlag Stuttgart · New York

Ruthenium(II)-Complex-Catalyzed Acceptorless Double Dehydrogenation of Primary Amines to Nitriles

Muthukumar Kannan
,
Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India   Email: msenthil@nitkkr.ac.in
› Author Affiliations
The authors acknowledge TEQIP-III for financial assistance in the form of a fellowship to M.K.
Further Information

Publication History

Received: 04 February 2020

Accepted after revision: 27 March 2020

Publication Date:
16 April 2020 (online)


Abstract

Acceptorless dehydrogenative oxidation of primary amines into nitriles using an in situ complex derived from commercially available dichloro(1,5-cyclooctadiene) ruthenium(II) complex and simple hexamethylenetetramine has been demonstrated. The synthetic protocol is highly selective and yields the nitrile compounds in moderate to excellent yields and produces hydrogen as the sole byproduct.

Supporting Information

 
  • References and Notes

    • 1a Pollak P, Romeder G, Hagedorn F, Gelbke H. -P. Nitriles . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2012
    • 1b Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substance: Synthesis Patents, Applications, 4th ed. Thieme; Stuttgart: 2001
    • 1c Larock RC. In Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; Weinheim: 1989: 819-995
    • 1d Layer R W. Chem. Rev. 1963; 63: 489
    • 1e Belowich ME, Stoddart JF. Chem. Soc. Rev. 2012; 41: 2003
    • 1f Martin SF. Pure Appl. Chem. 2009; 81: 195
    • 2a Grasselli RK. Catal. Today 1999; 49: 141
    • 2b Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1496
    • 2c Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1492
    • 2d Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. 1919; 52: 1749
    • 3a Nicolaou KC, Mathison CJ. N, Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
    • 3b Aoyama T, Sonoda N, Yamauchi M, Toriyama K, Anzai M, Ando A, Shioiri T. Synlett 1998; 35
    • 3c Ochiai M, Kajishima D, Sueda T. Heterocycles 1997; 46: 71
    • 3d Orito K, Hatakeyama T, Takeo M, Uchiito S, Tokuda M, Suginome H. Tetrahedron 1998; 54: 8403
    • 3e Fu PP, Harvey RG. Chem. Rev. 1978; 78: 317
    • 4a Tang R, Diamond SE, Neary ER. N, Mares F. J. Chem. Soc., Chem. Commun. 1978; 13: 562
    • 4b Bailey AJ, James BR. Chem. Commun. 1996; 20: 2343
    • 4c Ray R, Chandra S, Yadav V, Mondal P, Maiti D, Lahiri GK. Chem. Commun. 2017; 53: 4006
    • 4d Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2003; 42: 1480
    • 4e Ray R, Hazari AS. Lahiri G. K, Maiti D. Chem. Asian J. 2018; 13: 2138
    • 4f Ray R, Hazari AS, Chandra S, Maiti D, Lahiri GK. Chem. Eur. J. 2018; 24: 1067
    • 4g Ray R, Chandra S, Maiti D, Lahiri GK. Chem. Eur. J. 2016; 22: 8814
    • 5a Crabtree RH. Chem. Rev. 2017; 117: 9228
    • 5b Clot E, Eisenstein O, Crabtree RH. Chem. Commun. 2007; 2231
    • 6a Tseng K.-NT, Rizzi AM, Szymczak NK. J. Am. Chem. Soc. 2013; 135: 16352
    • 6b Hale LV. A, Malakar T, Tseng K.-NT, Zimmerman PM, Paul A, Szymczak NK. ACS Catal. 2016; 6: 4799
  • 7 Dutta I, Yadav S, Sarbajna A, De S, Hölscher M, Leitner W, Bera JK. J. Am. Chem. Soc. 2018; 140: 8662
  • 8 Kannan M, Muthaiah S. Organometallics 2019; 38: 3560
    • 9a Ananikov VP. Understanding Organometallic Reaction Mechanisms and Catalysis: Computational and Experimental Tools. Wiley-VCH; Weinheim: 2015
    • 9b Hong L, Sun W, Yang D, Li G, Wang R. Chem. Rev. 2016; 116: 4006
    • 9c Grzybowska-Świerkosz B. Top. Catal. 2002; 21: 35
    • 10a Kwak Y, Matyjaszewski K. Polym. Int. 2009; 58: 242
    • 10b Caillault X, Pouillaoua Y, Barrault J. J. Mol. Catal. A: Chem. 1995; 103: 117
    • 10c Dreyfors JM, Jones SB, Sayed Y. Am. Ind. Hyg. Assoc. J. 1989; 50: 579
    • 10d Cheng C, Gong S, Fu Q, Shen L, Liu Z, Qiao Y, Fu C. Polym. Bull. 2011; 66: 735
  • 11 General Procedure for the Dehydrogenation of Amine Ruthenium(II) chloride 1,5-cyclooctadiene 1 (3 mol%), HMTA (2, 3 mol%), amine 3 (0.25 mL), and dry toluene (1.0 mL) were placed in a Schlenk tube. The reaction mixture was stirred under open conditions to nitrogen and refluxed for 24 h. After completion of the reaction all toluene were evaporated under vacuo, the oxidized products 4 were isolated from crude mixture with the help of column chromatography using hexane/EtOAc as eluent. The formation of products was confirmed by comparing the 1H NMR data with literature reports.
  • 12 General Procedure for the Dehydrogenation of Benzylamine 3 in the Presence of Cyclohexene In a 50 mL closed-vessel reactor, ruthenium(II) chloride 1,5-cyclooctadiene 1 (0.004 g, 0.013 mmol), HMTA (2, 0.002 g, 0.013 mmol), amine 3 (0.05 mL, 0.5mmol), cyclohexene (0.4 mL, 5 mmol), and dry toluene (0.6 mL) were taken. The resulting mixture was heated at 110 °C for 24 h. After completion of the reaction, the solution was cooled to room temperature and extracted with CH2Cl2 then analyzed through gas chromatography; yield of benzonitrile 4 49% and cyclohexane 24%.
  • 13 General Procedure for in situ 1H NMR Study to Show Formation of Imine Intermediate In N2 atmosphere benzylamine 3 (0.05 mL, 0.46 mol), ruthenium(II) chloride 1,5-cyclooctadiene (1, 0.004 g, 3 mol%) HMTA (2, 0.002 g, 3 mol%), and toluene-d 8 as a solvent (0.4 mL) were taken in the NMR tube. The reaction mixture was heated at 110 °C for 12 h, and then the reaction mixture was cooled to room temperature before collecting the NMR data.