Synlett 2020; 31(10): 1011-1014
DOI: 10.1055/s-0040-1707990
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Mediated Synthesis of Aryl α-Keto Amides from Epoxide Derivatives

Fenghua Liu ◊
a   School of Pharmacy, Jiamusi University, Jiamusi 154007, P. R. of China
,
Yunjian Cui ◊
a   School of Pharmacy, Jiamusi University, Jiamusi 154007, P. R. of China
,
Yi Dong
b   Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. of China   Email: xuheng@imm.ac.cn
,
Heng Xu
b   Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. of China   Email: xuheng@imm.ac.cn
› Author Affiliations
We gratefully acknowledge the financial support from the CAMS Innovation Fund for Medical Sciences (2017-I2M-3-011) and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT35003, 2019-RC-HL-008).
Further Information

Publication History

Received: 18 February 2020

Accepted after revision: 20 February 2020

Publication Date:
03 March 2020 (online)


These authors contributed equally.

Abstract

A novel CuII-mediated synthesis of aryl α-keto amides from epoxide derivatives is reported. This transformation was conducted by using O2 as a green oxidant that meets the requirements of sustainable chemistry.

Supporting Information

 
  • References and Notes

  • 1 Álvarez S, Álcarez R, Khanwalkar H, Germain P, Lemaire G, Rodríguez-Barrios F, Gronemeyer H, de Lera ÁR. Bioorg. Med. Chem. 2009; 17: 4345
  • 2 Knust H, Nettekoven M, Pinard E, Roche O, Rogers-Evans M. WO 2009016087, 2009
  • 3 Patel DV, Gless RD. Jr, Webb Hsu HK, Anandan SK, Aavula BR. WO 2008073623, 2008
    • 4a Lu R.-J, Tucker JA, Pickens J, Ma Y.-A, Zinevitch T, Kirichenko O, Konoplev V, Kuznetsova S, Sviridov S, Brahmachary E, Khasanov A, Mikel C, Yang Y, Liu C, Wang J, Freel S, Fisher S, Sullivan A, Zhou J, Stanfield-Oakley S, Baker B, Sailstad J, Greenberg M, Bolognesi D, Bray B, Koszalka B, Jeffs P, Jeffries C, Chucholowski A, Sexton C. J. Med. Chem. 2009; 52: 4481
    • 4b Martina MR, Tenori E, Bizzarri M, Menichetti S, Caminati G, Procacci P. J. Med. Chem. 2013; 56: 1041
    • 4c Wedler HB, Palazzo TA, Pemberton RP, Hamann CS, Kurth MJ, Tantillo DJ. Bioorg. Med. Chem. Lett. 2015; 25: 4153

      For selected reviews, see:
    • 5a De Risi C, Pollini GP, Zanirato V. Chem. Rev. 2016; 116: 3241
    • 5b Kumar D, Vemula SR, Cook GR. ACS Catal. 2016; 6: 4920

      For recent reviews, see:
    • 6a Liang Y, Wei J, Qiu X, Jiao N. Chem. Rev. 2018; 118: 4912
    • 6b Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
    • 8a Liu J, Zhang R, Wang S, Sun W, Xia C. Org. Lett. 2009; 11: 1321
    • 8b Du F.-T, Ji J.-X. Chem. Sci. 2012; 3: 460
    • 8c Zhang C, Zong X, Zhang L, Jiao N. Org. Lett. 2012; 14: 3280
    • 8d Zhang J, Wei Y, Lin S, Liang F, Liu P. Org. Biomol. Chem. 2012; 10: 9237
    • 8e Zhang J, Liu Y, Chiba S, Loh T.-P. Chem. Commun. 2013; 49: 11439
    • 8f Wang H, Guo L.-N, Duan X.-H. Org. Biomol. Chem. 2013; 11: 4573
    • 8g Liu C, Yang Z, Guo S, Zeng Y, Zhu N, Li X, Fang Z, Guo K. Org. Biomol. Chem. 2016; 14: 8570
    • 8h Nekkanti S, Veeramani K, Kumar NP, Shankaraiah N. Green Chem. 2016; 18: 3439
    • 8i Zhang X, Yang H, Huo Y, Li J, Ma J, Ma J. Dalton Trans. 2016; 45: 8972
    • 8j Liu F, Zhang K, Liu Y, Chen S, Chen Y, Zhang D, Lin C, Wang B. RSC Adv. 2017; 7: 7158
    • 8k Liu C, Yang Z, Zeng Y, Fang Z, Guo K. Org. Chem. Front. 2017; 4: 2375
    • 9a Miyashita A, Shimada T, Sugawara A, Nohira H. Chem. Lett. 1986; 15: 1323
    • 9b Ertürk E, Göllü M, Demir AS. Tetrahedron 2010; 66: 2373
    • 9c Humbert N, Vyas DJ, Besnard C. l, Mazet CM. Chem. Commun. 2014; 50: 10592
    • 9d Tian Y, Jürgens E, Kunz D. Chem. Commun. 2018; 54: 11340
  • 10 α-Keto Amides 3a–l; General Procedure A mixture of the appropriate epoxide 1 (1.0 mmol) and Cu(OAc)2 (2.0 mmol) in DMF (2.0 mL) was stirred overnight at 120 °C under O2, then cooled to r.t. and diluted with EtOAc. H2O was added, and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel). N,N-Dimethyl-2-oxo-2-phenylacetamide (3a) Colorless oil; yield: 133 mg (75%), Rf = 0.5 (EtOAc–PE, 1:3). 1H NMR (400 MHz, CDCl3): δ = 8.12–7.84 (m, 2 H), 7.72–7.57 (m, 1 H), 7.57–7.41 (m, 2 H), 3.08 (s, 3 H), 2.93 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 191.9, 167.2, 134.9, 133.2, 129.8, 129.1, 37.2, 34.1. N,N-Dimethyl-2-oxo-2-(4-tolyl)acetamide (3b) Colorless oil; yield: 124 mg (65%); Rf = 0.5 (EtOAc–PE, 1:3). 1H NMR (400 MHz, CDCl3): δ = 7.79 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 7.9 Hz, 2 H), 3.06 (s, 3 H), 2.90 (s, 3 H), 2.39 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 191.7, 167.4, 146.1, 130.8, 130.0, 129.9, 37.2, 34.1, 22.0.