Synthesis 2020; 52(17): 2535-2540
DOI: 10.1055/s-0040-1707963
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis, Photophysical and Supramolecular Properties of a π-Conjugated Molecular Crown Containing a Pentagonal Unit: A Model Compound for Fullerene C240

Qiang Huang
,
Yayu Wu
,
Yu Zhou
,
Huiqing Liu
,
Jinyi Wang
,
Shengda Wang
,
Pingwu Du
Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. of China   eMail: dupingwu@ustc.edu.cn
› Institutsangaben
This work was financially supported by the National Natural Science Foundation of China (21473170, 51772285) and the National Key Research and Development Program of China (2017YFA0402800).
Weitere Informationen

Publikationsverlauf

Received: 23. Januar 2020

Accepted after revision: 14. April 2020

Publikationsdatum:
20. Mai 2020 (online)


Abstract

The total synthesis of carbon onions is a significant challenge in the fields of materials science and organic chemistry. To date, the synthesis of even a fragment of fullerene C240 and its smallest carbon onion C60@C240 remains poorly explored. Herein, we demonstrate a bottom-up strategy to produce a novel π-extended molecular crown-shaped molecule (MC3) containing curved pentagonal and hexagonal units. This molecular crown represents a curved model compound for fullerene C240 and is fully characterized by NMR, mass spectrometry, UV-vis absorption, and from its emission spectra. Its supramolecular host–guest interaction with fullerene C60 is also investigated. MC3 and C60@MC3 can potentially be employed as seeds or templates for the bottom-up synthesis of fullerene C240 and the carbon onion C60@C240, respectively.

Supporting Information

 
  • References

  • 1 Pope CJ, Marr JA, Howard JB. J. Phys. Chem. 1993; 97: 11001
    • 2a de Rouville HP. J, Garbage R, Cook RE, Pujol AR, Sirven AM, Rapenne G. Chem. Eur. J. 2012; 18: 3023
    • 2b Han L, Zhang YW, Chen WP, Cheng X, Ye KQ, Zhang JY, Wang Y. Chem. Commun. 2015; 51: 4477
    • 2c Venkatramaiah N, Kumar S, Patil S. Chem. Commun. 2012; 48: 5007
    • 2d Venkatramaiah N, Kumar S, Patil S. Chem. Eur. J. 2012; 18: 14745
    • 3a Sakurai H, Daiko T, Hirao T. Science 2003; 301: 1878
    • 3b Scott LT, Hashemi MM, Meyer DT, Warren HB. J. Am. Chem. Soc. 1991; 113: 7082
    • 3c Seiders TJ, Elliott EL, Grube GH, Siegel JS. J. Am. Chem. Soc. 1999; 121: 7804
    • 4a Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science 2002; 295: 1500
    • 4b Scott LT, Jackson EA, Zhang QY, Steinberg BD, Bancu M, Li B. J. Am. Chem. Soc. 2012; 134: 107
    • 5a Liu JZ, Osella S, Ma J, Berger R, Beljonne D, Schollmeyer D, Feng XL, Mullen K. J. Am. Chem. Soc. 2016; 138: 8364
    • 5b Mehta G, Sarma PV. V. S. Tetrahedron Lett. 2002; 43: 9343
    • 5c Mizyed S, Georghiou PE, Bancu M, Cuadra B, Rai AK, Cheng PC, Scott LT. J. Am. Chem. Soc. 2001; 123: 12770
  • 6 Gan LH. J. Chem. Educ. 2008; 85: 444
    • 7a Darzi ER, Jasti R. Chem. Soc. Rev. 2015; 44: 6401
    • 7b Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
    • 7c Farajidizaji B, Huang C, Thakellapalli H, Li S, Akhmedov NG, Popp BV, Petersen JL, Wang KK. J. Org. Chem. 2017; 82: 4458
    • 7d Huang C, Huang Y, Akhmedov NG, Popp BV, Petersen JL, Wang KK. Org. Lett. 2014; 16: 2672
    • 7e Omachi H, Matsuura S, Segawa Y, Itami K. Angew. Chem. Int. Ed. 2010; 49: 10202
    • 7f Segawa Y, Miyamoto S, Omachi H, Matsuura S, Senel P, Sasamori T, Tokitoh N, Itami K. Angew. Chem. Int. Ed. 2011; 50: 3244
    • 7g Wassy D, Pfeifer M, Esser B. J. Org. Chem. 2019; 85: 34
    • 7h Xu YZ, Wang BZ, Kaur R, Minameyer MB, Bothe M, Drewello T, Guldi DM, von Delius M. Angew. Chem. Int. Ed. 2018; 57: 11549
    • 7i Xia J, Bacon JW, Jasti R. Chem. Sci. 2012; 3: 3018
    • 7j Li PH, Wong BM, Zakharov LN, Jasti R. Org. Lett. 2016; 18: 1574
    • 7k Lucas F, Sicard L, Jeannin O, Rault-Berthelot J, Jacques E, Quinton C, Poriel C. Chem. Eur. J. 2019; 25: 7740
    • 7l Sicard L, Jeannin O, Rault-Berthelot J, Quinton C, Poriel C. ChemPlusChem 2018; 83: 874
  • 8 Ugarte D. Nature 1992; 359: 707
  • 9 Mordkovich VZ. Chem. Mater. 2000; 12: 2813
    • 10a Allemann O, Duttwyler S, Romanato P, Baldridge KK, Siegel JS. Science 2011; 332: 574
    • 10b Amsharov K. Phys. Status Solidi B 2017; 254: 1700170
    • 10c Amsharov KY, Kabdulov MA, Jansen M. Angew. Chem. Int. Ed. 2012; 51: 4594
    • 10d Cui SS, Zhuang GL, Lu DP, Huang Q, Jia HX, Wang Y, Yang SF, Du PW. Angew. Chem. Int. Ed. 2018; 57: 9330
  • 11 Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Angew. Chem. Int. Ed. 2019; 58: 6244
    • 12a Jackson EP, Sisto TJ, Darzi ER, Jasti R. Tetrahedron 2016; 72: 3754
    • 12b Golder MR, Colwell CE, Wong BM, Zakharov LN, Zhen JX, Jasti R. J. Am. Chem. Soc. 2016; 138: 6577
  • 13 Sauriat-Dorizon N, Maris T, Wuest JD, Enright GD. J. Org. Chem. 2003; 68: 240
  • 14 Thompson CM, Occhialini G, McCandless GT, Alahakoon SB, Cameron V, Nielsen SO, Smaldone RA. J. Am. Chem. Soc. 2017; 139: 10506