Synlett 2020; 31(12): 1167-1171
DOI: 10.1055/s-0040-1707947
letter
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Ring-Opening Polymerization Strategies for Synthesis of Poly(phosphothioesters) with a Pendent Phenyl Group

Huating Yan
a   College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. of China   Email: xqhao@zzu.edu.cn
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, P. R. of China   Email: xu_gq@qibebt.ac.cn   Email: wangqg@qibebt.ac.cn
,
Guangqiang Xu
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, P. R. of China   Email: xu_gq@qibebt.ac.cn   Email: wangqg@qibebt.ac.cn
,
Rulin Yang
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, P. R. of China   Email: xu_gq@qibebt.ac.cn   Email: wangqg@qibebt.ac.cn
,
Chengdong Lv
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, P. R. of China   Email: xu_gq@qibebt.ac.cn   Email: wangqg@qibebt.ac.cn
,
Li Zhou
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, P. R. of China   Email: xu_gq@qibebt.ac.cn   Email: wangqg@qibebt.ac.cn
,
Xin-Qi Hao
a   College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. of China   Email: xqhao@zzu.edu.cn
,
Qinggang Wang
b   Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, P. R. of China   Email: xu_gq@qibebt.ac.cn   Email: wangqg@qibebt.ac.cn
› Author Affiliations
We gratefully acknowledge the generous support by the National Natural Science Foundation of China (21901249, 21950410529), National Key R&D Plan (2017YFC1104800), Taishan Scholar Foundation of Shandong Province (tsqn201812112), and the “135” Projects Fund of Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences.
Further Information

Publication History

Received: 24 March 2020

Accepted after revision: 21 April 2020

Publication Date:
05 May 2020 (online)


Abstract

A novel type of phosphothioester substrate, 2-phenyl-1,3,2-dioxaphospholane 2-sulfide (PTP), has been synthesized and subjected to ring-opening polymerization. DBU/thiourea served as an efficient cooperative organocatalyst for the synthesis of poly(PTP), delivering the polymer with a well-defined structure, a relatively narrow molecular-weight distribution (1.14–1.20), and high molecular weight (up to 45.2 kg/mol). The ring-opening polymerization process showed a controlled/living nature. In addition, diblock copolymers of PTP with rac-lactide with well-defined structures were also synthesized.

Supporting Information

 
  • References and Notes

    • 1a List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 1b Northrup AB, MacMillan DW. C. Science 2004; 305: 1752
    • 1c List B. Chem. Rev. 2007; 107: 5413
    • 1d Lee J.-W, Mayer-Gall T, Opwis K, Song CE, Gutmann JS, List B. Science 2013; 341: 1225
    • 1e Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
    • 1f Čorić I, List B. Nature 2012; 483: 315
    • 1g Capacci AG, Malinowski JT, McAlpine NJ, Kuhne J, MacMillan DW. C. Nat. Chem. 2017; 9: 1073
    • 1h Beeson TD, Mastracchio A, Hong J.-B, Ashton K, MacMillan DW. C. Science 2007; 316: 582
    • 1i Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 1j Tsuji N, Kennemur JL, Buyck T, Lee S, Prévost S, Kaib PS. J, Bykov D, Farès C, List B. Science 2018; 359: 1501
    • 2a Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 2b Connon SJ. Angew. Chem. Int. Ed. 2006; 45: 3909
    • 3a Bossion A, Heifferon KV, Meabe L, Zivic N, Taton D, Hedrick JL, Long TE, Sardon H. Prog. Polym. Sci. 2019; 90: 164
    • 3b Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG. G, Hedrick JL. Chem. Rev. 2007; 107: 5813
    • 4a Arz MI, Annibale VT, Kelly NL, Hanna JV, Manners I. J. Am. Chem. Soc. 2019; 141: 2894
    • 4b He J, Ni P, Wang S, Shao H, Zhang M, Zhu X. J. Polym. Sci. Part A: Polym. Chem. 2010; 48: 1919
    • 4c Stukenbroeker TS, Solis-Ibarra D, Waymouth RM. Macromolecules 2014; 47: 8224
    • 4d Zhu W, Du H, Huang Y, Sun S, Xu N, Ni H, Cai X, Li X, Shen Z. J. Polym. Sci. Part A: Polym. Chem. 2013; 51: 3667
    • 4e McKinlay CJ, Waymouth RM, Wender PA. J. Am. Chem. Soc. 2016; 138: 3510
    • 4f Bauer KN, Tee HT, Velencoso MM, Wurm FR. Prog. Polym. Sci. 2017; 73: 61
  • 5 Iwasaki Y, Yamaguchi E. Macromolecules 2010; 43: 2664
  • 6 Steinbach T, Ritz S, Wurm FR. ACS Macro Lett. 2014; 3: 244
  • 7 Bauer KN, Liu L, Andrienko D, Wagner M, Macdonald EK, Shaver MP, Wurm FR. Macromolecules 2018; 51: 1272
  • 8 Zhang S, Li A, Zou J, Lin LY, Wooley KL. ACS Macro Lett. 2012; 1: 328
  • 9 Liu Y, Bejjanki NK, Jiang W, Zhao Y, Wang L, Sun X, Tang X, Liu H, Wang Y. Macromolecules 2019; 52: 4306
  • 10 Clément B, Grignard B, Koole L, Jérôme C, Lecomte P. Macromolecules 2012; 45: 4476
  • 11 Wolf T, Steinbach T, Wurm FR. Macromolecules 2015; 48: 3853
    • 12a Liu S, Ren C, Zhao N, Shen Y, Li Z. Macromol. Rapid Commun. 2018; 39: e1800485
    • 12b Zhang L, Nederberg F, Pratt RC, Waymouth RM, Hedrick JL, Wade CG. Macromolecules 2007; 40: 4154
    • 13a Dharmaratne NU, Pothupitiya JU, Bannin TJ, Kazakov OI, Kiesewetter MK. ACS Macro Lett. 2017; 6: 421
    • 13b Coderre DN, Fastnacht KV, Wright TJ, Dharmaratne NU, Kiesewetter MK. Macromolecules 2018; 51: 10121
  • 14 Lin B, Waymouth RM. J. Am. Chem. Soc. 2017; 139: 1645
  • 15 Zhou L, Xu G, Mahmood Q, Lv C, Wang X, Sun X, Guo K, Wang Q. Polym. Chem. 2019; 10: 1832
    • 16a Zhang X, Jones GO, Hedrick JL, Waymouth RM. Nat. Chem. 2016; 8: 1047
    • 16b Lin B, Waymouth RM. Macromolecules 2018; 51: 2932
    • 16c Xu G, Mahmood Q, Lv C, Yang R, Zhou L, Wang Q. Coord. Chem. Rev. 2020; 414: 213296
  • 17 Yuan R, Xu G, Lv C, Zhou L, Yang R, Wang Q. Mater. Today Commun. 2020; 22: 100747
    • 18a Hong M, Chen EY.-X. Nat. Chem. 2016; 8: 42
    • 18b Hong M, Chen EY.-X. Angew. Chem. Int. Ed. 2016; 55: 4188
    • 18c Shen Y, Zhao Z, Li Y, Liu S, Liu F, Li Z. Polym. Chem. 2019; 10: 1231
  • 19 Rostami A, Sadeh E, Ahmadi S. J. Polym. Sci. Part A: Polym. Chem. 2017; 55: 2483
  • 20 Qiu J, Zhang J, Yu F, Wei J, Ding L. J. Polym. Sci. Part A: Polym. Chem. 2016; 54: 692
  • 21 Lv C, Zhou L, Yuan R, Mahmood Q, Xu G, Wang Q. New J. Chem. 2020; 44: 1648
  • 22 Poly(2-phenyl-1,3,2-dioxaphospholane 2-sulfide) (Table [1], Entry 9) In a typical polymerization reaction, a 5 mL Schlenk tube equipped with a stirring bar was dried and charged with argon three times, and then placed in a glovebox. In the glovebox, TU (7.4 mg, 0.02 mmol), a 1 M solution of DBU in toluene (20 μL, 0.02 mmol), a 1 M solution of PPA in toluene (20 μL, 0.02 mmol), CH2Cl2 (0.5 mL), and PTP (100 mg, 0.5 mmol) were added sequentially to the Schlenk tube. The tube was then removed from the glovebox and kept in an ice bath for 20 min. The reaction was quenched by addition of a 1 M solution of AcOH in CH2Cl2 (50 μL). The polymer was precipitated several times from cold Et2O, and dried under vacuum to a constant weight. The molecular-weight distribution and number-average molecular weight of the polymer were determined by GPC: M n = 4400 g/mol; Ð = 1.19.