Synlett 2020; 31(12): 1221-1225
DOI: 10.1055/s-0040-1707946
letter
© Georg Thieme Verlag Stuttgart · New York

Cobalt-Catalyzed Decarboxylative Methylation and Ethylation of Aliphatic N-(Acyloxy)phthalimides with Organoaluminum Reagents

Ze-Zhong Wang
a   Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Email: fuyao@ustc.edu.cn
,
Guang-Zu Wang
a   Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Email: fuyao@ustc.edu.cn
,
Bin Zhao
a   Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Email: fuyao@ustc.edu.cn
,
Rui Shang
a   Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Email: fuyao@ustc.edu.cn
b   Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: rui@chem.s.u-tokyo.ac.jp
,
Yao Fu
a   Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Email: fuyao@ustc.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21901237) and KY (2060000019). G.-Z.W. thanks the China Postdoctoral Science Foundation (2018M640588).
Further Information

Publication History

Received: 25 March 2020

Accepted after revision: 16 April 2020

Publication Date:
05 May 2020 (online)


Abstract

A cobalt-catalyzed decarboxylative methylation of aliphatic redox-active esters [N-(acyloxy)phthalimides; RAEs] with trimethylaluminum under mild conditions was developed, providing a method for transforming a carboxylate group into a methyl group without redox fluctuation. Primary and secondary RAEs were both amenable substrates, whereas a tertiary RAE delivered an elimination product. Triethylaluminum was also used to deliver a decarboxylative ethylation product.

Supporting Information

 
  • References and Notes

    • 1a Barreiro EJ, Kümmerle AE, Fraga CA. M. Chem. Rev. 2011; 111: 5215
    • 1b Leung CS, Leung SS. F, Tirado-Rives J, Jorgensen WL. J. Med. Chem. 2012; 55: 4489
    • 1c Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
  • 2 Cox CD, Breslin MJ, Whitman DB, Schreier JD, McGaughey GB, Bogusky MJ, Roecker AJ, Mercer SP, Bednar RA, Lemaire W, Bruno JG, Reiss DR, Harrell CM, Murphy KL, Garson SL, Doran SM, Prueksaritanont T, Anderson WB, Tang C, Roller S, Cabalu TD, Cui D, Hartman GD, Young SD, Koblan KS, Winrow CJ, Renger JJ, Coleman PJ. J. Med. Chem. 2010; 53: 5320
    • 3a Devasagayaraj A, Stüdemann T, Knochel PA. Angew. Chem. Int. Ed. 1996; 34: 2723
    • 3b Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
    • 3c Zhou JS, Fu GC. J. Am. Chem. Soc. 2003; 125: 14726
    • 3d Saito B, Fu GC. J. Am. Chem. Soc. 2007; 129: 9602
    • 3e Ren P, Vechorkin O, von Allmen K, Scopelliti R, Hu X. J. Am. Chem. Soc. 2011; 133: 7084
    • 3f Cordier CJ, Lundgren RJ, Fu GC. J. Am. Chem. Soc. 2013; 135: 10946
    • 3g Choi J, Fu GC. Science 2017; 356: eaaf7230
    • 3h Smith RT, Zhang X.-H, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
    • 4a Ullrich J, Breit B. ACS Catal. 2018; 8: 785
    • 4b Kon K, Onodera W, Takakusagia S, Shimizu K.-i. Catal. Sci. Technol. 2014; 4: 3705
    • 4c Gosselink R, Stellwagen WD. R, Bitter JH. Angew. Chem. Int. Ed. 2013; 52: 5089
    • 5a Goossen LJ, Deng G.-J, Levy LM. Science 2006; 313: 662
    • 5b Shang R, Fu Y, Li J.-B, Zhang S.-L, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 5738
    • 5c Shang R, Yang Z.-W, Wang Y, Zhang S.-L, Liu L. J. Am. Chem. Soc. 2010; 132: 14391
    • 5d Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 5e Shang R, Liu L. Sci. China: Chem. 2011; 54: 1670
    • 5f Straathof AJ. Chem. Rev. 2014; 114: 1871
    • 5g Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
    • 5h Zuo Z.-W, Ahneman DT, Chu L.-L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 5i Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 5j Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
    • 5k Wang G.-Z, Shang R, Cheng W.-M, Fu Y. Org. Lett. 2015; 17: 4830
    • 5l Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
    • 5m Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 5n Schwarz J, König B. Green Chem. 2018; 20: 323
    • 5o Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 6a Schnermann MJ, Overman LE. J. Am. Chem. Soc. 2011; 133: 16425
    • 6b Huang L, Olivares A, Weix MD. J. Angew. Chem. Int. Ed. 2017; 56: 11901
    • 6c Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
    • 6d Murarka S. Adv. Synth. Catal. 2018; 360: 1735
    • 6e Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
    • 7a Cheng W.-M, Shang R, Fu Y. ACS Catal. 2017; 7: 907
    • 7b Cheng W.-M, Shang R, Fu Y. Chem. Eur. J. 2017; 23: 10259
    • 7c Cheng W.-M, Shang R, Zhao B, Xing W.-L, Fu Y. Org. Lett. 2017; 19: 4291
    • 7d Wang G.-Z, Shang R, Fu Y. Org. Lett. 2018; 20: 888
    • 7e Cheng W.-M, Shang R, Fu Y. Nat. Commun. 2018; 9: 5215
    • 7f Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
    • 8a Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan C.-M, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 8b Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
    • 8c Wang J, Qin T, Chen T.-G, Wimmer L, Edwards JT, Cornella J, Vokits B, Shaw SA, Baran PS. Angew. Chem. Int. Ed. 2016; 55: 9676
    • 8d Edwards JT, Merchant RR, McClymont KS, Knouse KW, Qin T, Malins LR, Vokits BS, Shaw A, Bao D.-H, Wei F.-L, Zhou T, Eastgate MD, Baran PS. Nature 2017; 545: 213
    • 8e Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: eaam7355
  • 9 Toriyama F, Cornella J, Wimmer L, Chen T.-G, Dixon DD, Creech G, Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
  • 10 Liu X.-G, Zhou C.-J, Lin E, Han X.-L, Zhang S.-S, Li Q.-J, Wang H.-G. Angew. Chem. Int. Ed. 2018; 57: 13096
    • 11a Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
    • 11b Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2016; 138: 10132
    • 13a Wakabayashi K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2001; 123: 5374
    • 13b Tsuji T, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2002; 41: 4137
    • 13c Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
    • 13d Friedfeld MR, Zhong H, Ruck RT, Shevlin M, Chirik PJ. Science 2018; 360: 888
  • 14 4-Methyl-1-tosylpiperidine (2); Typical Procedure Phthalimide 1 (1.0 equiv, 0.2 mmol), CoBr2 (10 mol%), and dpph (12 mol%) were placed in a 10 mL transparent Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon three times. Anhyd DMF (2.0 mL) and a 2 M solution of AlMe3 in hexane (1.5 equiv) were added from a gastight syringe under argon, and the mixture was stirred at r.t. for 12 h. The reaction was then quenched with sat. aq sodium potassium tartrate solution, and the mixture was extracted with EtOAc (3 × 10 mL). The organic layers were combined and concentrated under vacuo. The crude product was purified by flash column chromatography [silica gel, EtOAc–PE (1:5)] to give a white solid; yield: 44.2 mg (88%); mp 83–85 °C. 1H NMR (400 MHz, CDCl3): d = 7.64 (d, J = 8.3 Hz, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 3.73 (d, J = 11.5 Hz, 2 H), 2.43 (s, 3 H), 2.22 (t, J = 10.9 Hz, 2 H), 1.67 (s, 2 H), 1.28 (dd, J = 12.4, 5.7 Hz, 3 H), 0.90 (d, J = 5.6 Hz, 3 H). 13C NMR (101 MHz, CDCl3): d = 143.2, 133.3, 129.5, 127.6, 46.3, 33.3, 30.1, 21.5, 21.4.