RSS-Feed abonnieren
DOI: 10.1055/s-0040-1707889
7-Siloxy-Substituted Hexahydronaphthalene Derivatives: Samarium Diiodide Promoted Synthesis and Typical Reactions
This work was supported by the Deutsche Forschungsgemeinschaft and Bayer HealthCare.Publikationsverlauf
Received: 21. April 2020
Accepted after revision: 25. Mai 2020
Publikationsdatum:
24. Juni 2020 (online)

Dedicated to Professor Helmut Vorbrüggen on the occasion of his 90th birthday
Abstract
The samarium diiodide promoted reductive cyclization of a series of γ-aryl ketones with acetoxy, alkoxy, and siloxy groups in ortho-, meta-, and para-positions was investigated. Only precursors with p-acetoxy, p-tert-butoxy, or p-siloxy substituents furnished decent yields of the desired 7-oxy-1,2,3,4,6,8a-hexahydronaphthalene derivatives. The products were formed without contamination with the regioisomeric bicyclic products containing conjugated double bonds. Typical reactions exploiting the silyl enol ether moiety of the 7-(tert-butyldimethylsiloxy)-1,2,3,4,6,8a-hexahydronaphthalene derivative were performed, allowing stereoselective access to highly substituted hexahydro-, octahydro-, or decahydronaphthalene derivatives.
Key words
dearomatization - ketyl - hexahydronaphthalene - radical - samarium diiodide - silyl enol etherSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707889.
- Supporting Information
-
References
- 1a Mander LN. Synlett 1991; 134
- 1b Pape AR, Kaliappan KP, Kündig EP. Chem. Rev. 2000; 100: 2917
- 1c Ortiz FL, Iglesias MJ, Fernández I, Sánchez CM. A, Gómez GR. Chem. Rev. 2007; 107: 1580
- 1d Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467
- 1e Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662 ; Angew. Chem. 2012, 124, 12834
- 1f Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
- 1g Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 1h Denizot N, Tomakinian T, Beaud R, Kouklovsky C, Vincent G. Tetrahedron Lett. 2015; 56: 4413
- 1i Wu T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 1j Okumura M, Sarlah D. Synlett 2018; 29: 845
- 1k Wertjes WC, Southgate EM, Sarlah D. Chem. Soc. Rev. 2018; 47: 7996
- 1l Zeidan M, Lautens M. Synthesis 2019; 51: 4137
- 1m Okumura M, Sarlah D. Eur. J. Org. Chem. 2020; 1259
- 2a Donohoe TJ, Garg R, Stevenson CA. Tetrahedron: Asymmetry 1996; 7: 317
- 2b Roche SP, Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068 ; Angew. Chem. 2011, 123, 4154
- 3a Namy J.-L, Kagan HB. Nouv. J. Chim. 1977; 1: 5
- 3b Girard P, Namy J.-L, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
- 3c Molander GA, Harris CR. Chem. Rev. 1996; 96: 307
- 3d Edmonds DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
- 3e Gopalaiah K, Kagan HB. New J. Chem. 2008; 32: 607
- 3f Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140 ; Angew. Chem. 2009, 121, 7276
- 3g Procter DJ, Flowers RA. II, Skrydstrup T. Organic Synthesis Using Samarium Diiodide: A Practical Guide . Royal Society of Chemistry; Cambridge: 2010
- 3h Honda T. Heterocycles 2011; 83: 1
- 3i Szostak M, Procter DJ. Angew. Chem. Int. Ed. 2012; 51: 9238 ; Angew. Chem. 2012, 124, 9372
- 3j Gopalaiah K, Kagan HB. Chem. Rec. 2013; 13: 187
- 3k Szostak M, Spain M, Procter MJ. Chem. Soc. Rev. 2013; 42: 9155
- 3l Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 3m Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
- 3n Plesniak MP, Huang H.-M, Procter DJ. Nat. Rev. Chem. 2017; 1: 0077
- 4a Dinesh CU, Reissig H.-U. Angew. Chem. Int. Ed. 1999; 38: 789 ; Angew. Chem. 1999, 111, 874
- 4b Nandanan E, Dinesh CU, Reissig H.-U. Tetrahedron 2000; 56: 4267
- 4c Berndt M, Hlobilová I, Reissig H.-U. Org. Lett. 2004; 6: 957
- 4d Aulenta F, Berndt M, Brüdgam I, Hartl H, Sörgel S, Reissig H.-U. Chem. Eur. J. 2007; 13: 6047
- 4e Wefelscheid UK, Reissig H.-U. Adv. Synth. Catal. 2008; 350: 65
- 4f Wefelscheid UK, Reissig H.-U. Tetrahedron: Asymmetry 2010; 21: 1601
- 4g Niermann A, Reissig H.-U. Synlett 2011; 525
- 5a Gross S, Reissig H.-U. Synlett 2002; 2027
- 5b Beemelmanns C, Blot V, Gross S, Lentz D, Reissig H.-U. Eur. J. Org. Chem. 2010; 2716
- 5c Beemelmanns C, Reissig H.-U. Angew. Chem. Int. Ed. 2010; 49: 8021 ; Angew. Chem. 2010, 122, 8195
- 5d Rao CN, Lentz D, Reissig H.-U. Angew. Chem. Int. Ed. 2015; 54: 2750 ; Angew. Chem. 2015, 127, 2788
- 5e Rao CN, Bentz C, Reissig H.-U. Chem. Eur. J. 2015; 21: 15951
- 5f Achazi AJ, Andrae D, Reissig H.-U, Paulus B. J. Comput. Chem. 2017; 38: 2693
- 5g Mao H, You B.-X, Zhou L.-J, Xie T.-T, Wen Y-H, Lv X, Wang X.-X. Org. Biomol. Chem. 2017; 15: 6157
- 5h Beemelmanns C, Bentz C, Nitsch D, Reissig H.-U. Chem. Eur. J. 2019; 21: 8780
- 6a Berndt M, Gross S, Hölemann A, Reissig H.-U. Synlett 2004; 422
- 6b Beemelmanns C, Reissig H.-U. Pure Appl. Chem. 2011; 83: 507
- 6c Beemelmanns C, Reissig H.-U. Chem. Soc. Rev. 2011; 40: 2199
- 6d Beemelmanns C, Reissig H.-U. Chem. Rec. 2015; 15: 872
- 7a Schmalz H.-G, Siegel S, Bats JW. Angew. Chem. Int. Ed. 1995; 34: 2383 ; Angew. Chem. 1995, 107, 2597
- 7b Schmalz H.-G, Kiehl O, Gotov B. Synlett 2002; 1253
- 7c Shiue J.-S, Lin C.-C, Fang J.-M. J. Org. Chem. 1997; 62: 4643
- 7d Kuo C.-W, Fang J.-M. Synth. Commun. 2001; 31: 877
- 7e Huang H.-M, Procter DJ. J. Am. Chem. Soc. 2017; 139: 1661
- 7f Huang H.-M, McDouall JJ. W, Procter DJ. Nat. Catal. 2019; 2: 211
- 7g Shono T, Kise N, Suzumoto T, Morimoto T. J. Am. Chem. Soc. 1986; 108: 4676
- 7h Kise N, Suzumoto T, Shono T. J. Org. Chem. 1994; 59: 1407
- 7i Gorny R, Schäfer HJ, Fröhlich R. Angew. Chem. Int. Ed. 1995; 34: 2007 ; Angew. Chem. 1995, 107, 2188
- 7j Heinemann J, Schäfer HJ, Fröhlich R, Wibbeling B. Eur. J. Org. Chem. 2003; 2919
- 8a Inanaga J, Ishikawa M, Yamaguchi M. Chem. Lett. 1987; 1485
- 8b Prasad E, Flowers RA. II. J. Am. Chem. Soc. 2002; 124: 6895
- 8c Dahlén A, Hilmersson G. Eur. J. Inorg. Chem. 2004; 3393
- 8d Flowers RA. II. Synlett 2008; 1427
- 8e Halder S, Hoz S. J. Org. Chem. 2014; 79: 2682
- 9a McDonald CE, Ramsey JD, Sampsell DG, Butler JA, Cecchini MR. Org. Lett. 2010; 12: 5178
- 9b Berndt M, Hölemann A, Niermann A, Bentz C, Zimmer R, Reissig H.-U. Eur. J. Org. Chem. 2012; 1299
- 9c McDonald CE, Ramsey JD, Sampsell DG, Anderson LA, Krebs JE, Smith SN. Tetrahedron 2013; 69: 2947
- 10a Beckwith AL. J. Tetrahedron 1981; 37: 3073
- 10b Spellmeyer DC, Houk KN. J. Org. Chem. 1987; 52: 959
- 11a Berndt M, Reissig H.-U. Synlett 2001; 1290
- 11b Wefelscheid UK, Berndt M, Reissig H.-U. Eur. J. Org. Chem. 2008; 3635
- 12a Ohno H, Maeda S, Okumura M, Wakayama R, Tanaka T. Chem. Commun. 2002; 316
- 12b Ohno H, Wakayama R, Maeda S, Iwasaki H, Okumura M, Iwata C, Mikamiyama H, Tanaka T. J. Org. Chem. 2003; 68: 5909
- 12c Ohno H, Okumura M, Maeda S, Iwasaki H, Wakayama R, Tanaka T. J. Org. Chem. 2003; 68: 7722
- 12d Ohno H, Iwasaki H, Eguchi T, Tanaka T. Chem. Commun. 2004; 2228
- 12e Iwasaki H, Eguchi T, Tsutsui N, Ohno H, Tanaka T. J. Org. Chem. 2008; 73: 7145
- 12f Iwasaki H, Tsutsui N, Eguchi T, Ohno H, Yamashita M, Tanaka T. Tetrahedron Lett. 2011; 52: 1770
- 13 For the cyclizations of (p-methoxyphenyl)pentan-2-one we obtained products of type F and G in ratios between 4:1 to 1:1 (together with aromatized compound I and reduced precursor H). So far it is not clear whether the protonation of the intermediate anion is kinetically controlled or whether a subsequent proton shift occurs. Even (partial) hydrogen abstraction from THF at an earlier stage of the multistep reaction is possible. See: Niermann A. Dissertation . Freie Universität Berlin; Germany: 2012
- 14a Tamaru Y, Ochiai H, Nakamura T, Tsubaki K, Yoshida Z. Tetrahedron Lett. 1985; 26: 5559
- 14b Tamaru Y, Ochiai H, Nakamura T, Yoshida Z. Tetrahedron Lett. 1986; 27: 955
- 15 Figadere B, Norman AW, Henry HL, Koeffler HP, Zhou JY, Okamura WH. J. Med. Chem. 1991; 34: 2452
- 16 Chiarello J, Joullié MM. Tetrahedron 1988; 44: 41
- 17 Mukaiyama T. Angew. Chem. Int. Ed. 1977; 16: 817; Angew. Chem. 1977, 89, 858
- 18a Mehta G, Sen S. Eur. J. Org. Chem. 2009; 123
- 18b Mehta G, Sen S, Kumara TH. S. Tetrahedron 2011; 3440
- 18c Mehta G, Sen S. Chimia 2012; 66: 892
- 18d Malik M, Jarosz S. Beilstein J. Org. Chem. 2016; 12: 2602
- 18e Hedberg C, Estrup M, Eikeland EZ, Jensen HH. J. Org. Chem. 2018; 83: 2154
- 19 Zimmer R, Reissig H.-U. J. Org. Chem. 1992; 57: 339
- 20 Reissig H.-U, Hippeli C, Arnold T. Chem. Ber. 1990; 123: 2403
- 21 Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 22a Reissig H.-U, Hirsch E. Angew. Chem. Int. Ed. 1980; 19: 813 ; Angew. Chem. 1980, 92, 839
- 22b Kunkel E, Reichelt I, Reissig H.-U. Liebigs Ann. Chem. 1984; 512
- 23 Kunkel E, Reichelt I, Reissig H.-U. Liebigs Ann. Chem. 1984; 802
For general reviews dealing with synthetic applications of dearomatizing processes, see:
For reviews concentrating on reductive dearomatization reactions, see:
For the first publications, see:
For reviews, see:
For cyclizations of arenes leading to carbocyclic compounds, see:
For selected references on cyclizations of (hetero)arenes leading to heterocyclic compounds, see:
For reviews summarizing our work, see:
For related samarium diiodide induced aryl couplings, see:
For electrochemical reductive cyclizations of related substrates, see:
HMPA strongly increases the reducing ability of samarium diiodide and is therefore used for many ketyl coupling reactions, see:
Since HMPA is carcinogenic and teratogenic, related additives without these harmful effects have been studied. Tripyrrolidinophosphoric acid triamide (TPPA) can often serve as a good substitute, see:
For stereoelectronic effects in radical cyclizations, see:
For related studies of aryl ketones with electron-withdrawing substituents, see: