Synlett 2020; 31(14): 1404-1408
DOI: 10.1055/s-0040-1707883
letter
© Georg Thieme Verlag Stuttgart · New York

Formal Synthesis of (±)-Aplykurodinone-1 Based on the Indium-Catalyzed Conia-Ene Reaction

Xiaoji Wang
a   School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. of China
c   Engineering Research Center of Health Food Design and Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, P. R. of China   Email: 2012207455@tju.edu.cn
,
Yi Zhou
a   School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. of China
,
Hesheng Xiao
a   School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. of China
,
Wentao Ou
a   School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. of China
,
Yiying Pang
a   School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. of China
,
Wang Li
a   School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. of China
,
Liping Wang
a   School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. of China
,
Shuangping Huang
b   College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. of China
› Author Affiliations
We acknowledge financial support from the National Science Foundation of China (21062088, 21562020) and the Science and Technology Plan Project of Jiangxi Province (No. 20151BBG70028, 20142BBE50006).
Further Information

Publication History

Received: 07 February 2020

Accepted after revision: 25 May 2020

Publication Date:
18 June 2020 (online)


Abstract

A concise formal synthesis of (±)-aplykurodinone-1 starting from a commercially available material and based on the indium-catalyzed Conia-ene reaction has been accomplished. The synthesis features a Riley selenium dioxide oxidation, a Krapcho dealkoxycarbonylation, and a ring-closing metathesis approach. The synthetic strategy was also supported by a Saegusa oxidation and a classic Michael 1,4-conjugate addition.

Supporting Information

 
  • References and Notes


    • For general reviews and selected Conia-ene reactions, see:
    • 1a Conia JM, Le Perchec P. Synthesis 1975; 1
    • 1b Tsuji H, Yamagata K.-I, Itoh Y, Endo K, Nakamura M, Nakamura E. Angew. Chem. Int. Ed. 2007; 46: 8060
    • 1c Itoh Y, Tsuji H, Yamagata K.-I, Endo K, Tanaka I, Nakamura M, Nakamura E. J. Am. Chem. Soc. 2008; 130: 17161
    • 1d Takahashi K, Midori M, Kawano K, Ishihara J, Hatakeyama S. Angew. Chem. Int. Ed. 2008; 47: 6244
    • 1e Li W, Liu X, Zhou X, Lee C.-S. Org. Lett. 2010; 12: 548
    • 1f Huang S, Du G, Lee C.-S. J. Org. Chem. 2011; 76: 6534
    • 1g Chan LY, Kim S, Park Y, Lee PH. J. Org. Chem. 2012; 77: 5239 ; corrigendum: J. Org. Chem. 2012, 77, 5856
    • 1h Urabe F, Nagashima S, Takahashi K, Ishihara J, Hatakeyama S. J. Org. Chem. 2013; 78: 3847
    • 1i Kallepu S, Gollapelli KK, Nanubolu JB, Chegondi R. Chem. Commun. 2015; 51: 16840
    • 1j Tashima S, Sawada T, Saito K, Yamada T. Chem. Lett. 2016; 45: 649
    • 1k Meazza M, Leth LA, Erickson JD, Jørgensen KA. Chem. Eur. J. 2017; 23: 7905
    • 1l Huang J, Bao W, Huang S, Yang W, Zhu L, Du G, Lee C.-S. Org. Lett. 2018; 20: 7466
    • 1m Xu Y, Sun Q, Tan T.-D, Yang M.-Y, Yuan P, Wu S.-Q, Lu X, Hong X, Ye L.-W. Angew. Chem. Int. Ed. 2019; 58: 16252
    • 2a Miyamoto K, Higuchi R, Komori T. Tetrahedron Lett. 1986; 27: 1153
    • 2b Ortega MJ, Zubía E, Salvá J. J. Nat. Prod. 1997; 60: 488
  • 3 Gavagnin M, Carbone M, Nappo M, Mollo E, Roussis V, Cimino G. Tetrahedron 2005; 61: 617
  • 4 Spinella A, Gavagnin M, Crispino A, Cimino G, Martinez E, Ortea J, Sodano G. J. Nat. Prod. 1992; 55: 989
    • 5a Zhang Y, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 9567 ; corrigendum: J. Am. Chem. Soc. 2010, 132, 9928
    • 5b Peixoto PA, Jean A, Maddaluno J, De Paolis M. Angew. Chem. Int. Ed. 2013; 52: 6971
    • 5c Liu G, Mei G, Chen R, Yuan H, Yang Z, Li C.-c. Org. Lett. 2014; 16: 4380
    • 5d Tang Y, Liu J.-t, Chen P, Lv M.-c, Wang Z.-z, Huang Y.-k. J. Org. Chem. 2014; 79: 11729
    • 5e Singh N, Pulukuri KK, Chakraborty TK. Tetrahedron 2015; 71: 4608
    • 5f Tao C, Zhang J, Chen X, Wang H, Li Y, Cheng B, Zhai H. Org. Lett. 2017; 19: 1056
    • 5g Xu B, Xun W, Wang T, Qiu FG. Org. Lett. 2017; 19: 4861 ; corrigendum: Org. Lett. 2018, 20, 7745
    • 5h Lee J.-H, Cho C.-G. Org. Lett. 2018; 20: 7312
    • 5i Peng Y, Sun Y, Wang B, Zhou Y, Huang S, Wang X. Tetrahedron Lett. 2019; 60: 839
  • 6 Davison EC, Forbes IT, Holmes AB, Warner JA. Tetrahedron 1996; 52: 11601
  • 7 Ryu Y, Scott AI. Tetrahedron Lett. 2003; 44: 7499
  • 8 Liu Y.-T, Chen J.-Q, Li L.-P, Shao X.-Y, Xie J.-H, Zhou Q.-L. Org. Lett. 2017; 19: 3231
  • 9 Prakash C, Rajeshwaran GG, Mohanakrishnan AK. Synth. Commun. 2010; 40: 2097
    • 10a Tietze LF, Kahle K, Raschke T. Chem. Eur. J. 2002; 8: 401
    • 10b Carrillo J, Gómez A, Costa AM, Fernández P, Isart C, Sidera M, Vilarrasa J. Tetrahedron Lett. 2014; 55: 4623
    • 11a Anaya J, Grande MC, Grande M, Patino A.-I, Torres P. Synlett 1999; 1429
    • 11b Zhou B, Tang H, Feng H, Li Y. Tetrahedron 2011; 67: 904
    • 11c Huang B, Guo L, Jia Y. Angew. Chem. Int. Ed. 2015; 54: 13599
    • 11d Wu M.-J, Wu D.-M, Chen J.-B, Zhao J.-F, Gong L, Gong Y.-X, Li Y, Yang X.-D, Zhang H. Bioorg. Med. Chem. Lett. 2018; 28: 2543
    • 11e Shao W, Huang J, Guo K, Gong J, Yang Z. Org. Lett. 2018; 20: 1857
    • 12a Gallant M, Sawyer N, Metters KM, Zamboni RJ. Bioorg. Med. Chem. 1998; 6: 63
    • 12b Knobloch E, Brückner R. Synthesis 2008; 2229
    • 12c Du G, Bao W, Huang J, Huang S, Yue H, Yang W, Zhu L, Liang Z, Lee C.-S. Org. Lett. 2015; 17: 2062
  • 13 2-(Trimethylsilyl)ethyl (3aS,7aR)-7a-Methyl-4-methylene-3-oxooctahydro-3aH-indene-3a-carboxylate [(±)-4] A solution of 14 (6.16 g 19.96 mmol) in dry CH2Cl2 (194 mL) was stirred with 4 Å MS (9.98 g) at 0 °C under N2 for 0.5 h. In(OTf)3 (11.2 g, 19.93 mmol) was added and the mixture was stirred for 10 min. The mixture then warmed to r.t. and stirred for 30 min, then filtered through a pad of Celite that was washed with CH2Cl2. The filtrate was concentrated in vacuo, and the oily crude residue was purified by column chromatography [silica gel, PE–EtOAc (40:1)] to give a colorless oil; yield: 5.54 g (90%). 1H NMR (400 MHz, CDCl3): δ = 5.01 (s, 1 H), 4.73 (s, 1 H), 4.33–4.04 (m, 2 H), 2.56–2.42 (m, 1 H), 2.42–2.30 (m, 2 H), 2.27–2.15 (m, 1 H), 2.09–1.95 (m, 1 H), 1.76–1.56 (m, 3 H), 1.56–1.44 (m, 1 H), 1.39 (ddd, J = 12.7, 8.8, 3.8 Hz, 1 H), 1.05 (d, J = 7.2 Hz, 3 H), 1.02–0.92 (m, 2 H), 0.02 (s, 9 H). 13C NMR (101 MHz, CDCl3); δ = 208.98, 167.66, 139.59, 113.24, 68.45, 65.25, 42.94, 33.78, 32.92, 31.73, 28.90, 24.45, 20.87, 16.06, –2.65. HRMS (ESI): m/z [M + H]+ calcd for C17H29O3Si: 309.1841; found: 309.1886.
    • 14a Selvakumar N, Kumar PK, Reddy KC. S, Chary BC. Tetrahedron Lett. 2007; 48: 2021
    • 14b Wojtkielewicz A, Morzycki JW. Steroids 2007; 72: 552
    • 14c Bürki C, Bonjoch J, Bradshaw B, Villa G, Renaud P. Chem. Eur. J. 2015; 21: 395