Synlett 2020; 31(15): 1474-1478
DOI: 10.1055/s-0040-1707820
letter
© Georg Thieme Verlag Stuttgart · New York

Europium-Catalyzed Intramolecular Addition of Carboxylic Acid to Nonactivated Alkenes: An Efficient Route to Aryl-Substituted γ-Butyrolactone

Manas Bandyopadhyay
,
Abhijit Nayak
,
Financial support from Council of Scientific and Industrial Research (CSIR, Grant No. 02(0270)/16/EMR-II), New Delhi and Department of Science and Technology, Science and Engineering Research Board (DST-SERB, Grant No. SB/S1/OC-15/2014), New Delhi are most gratefully acknowledged.
Further Information

Publication History

Received: 07 April 2020

Accepted after revision: 06 May 2020

Publication Date:
16 June 2020 (online)


Abstract

Europium(III)triflate has been proved to be an effective catalyst for intramolecular cyclization of aryl-substituted carboxylic acid to afford arylated γ-butyrolactone. Various attractive features, such as broad substrate scope, a wide range of functional group tolerance, operational simplicity, complete atom economy, and good-to-excellent yields have made this new protocol more appealing. Moreover, this method provides a practical alternative to the existing catalysts.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Lorente A, Lamariano-Merketegi J, Albericio F, Alvarez M. Chem. Rev. 2013; 113: 4567 ; and references cited therein
    • 1b Mihovilovic MD, Bianchi DA, Rudroff F. Chem. Commun. 2006; 3214
    • 1c Albertson AK. F, Lumb JP. Angew. Chem. Int. Ed. 2015; 54: 2204
    • 1d Lin Y.-S, Lin J.-S, Chang CC, Lee S.-S. J. Nat. Prod. 2015; 78: 181

      For a review on oxacyclic macrodiolide natural products, see:
    • 2a Kang EJ, Lee E. Chem. Rev. 2005; 105: 4348 ; and the references cited therein
    • 2b Nasir NM, Ermanis K, Clarke PA. Org. Biomol. Chem. 2014; 12: 3323
    • 2c Zaware N, LaPorte MG, Farid M, Liu L, Wipf P, Floreancig PE. Molecules 2011; 16: 3648
    • 3a Boivin TL. B. Tetrahedron 1987; 43: 3309
    • 3b Cradilo G, Orena M. Tetrahedron 1990; 46: 3321
    • 4a Hoffmann HM. R, Rabe J. Angew. Chem. Int. Ed. 1985; 24: 94
    • 4b Cava A, Cortes D, Figureadere B, Hocquemiller R, Laprevote O, Laurens A, Leboeuf M. In Phytochemical Potential of Tropical Plants . Downum KR, Romeo JT, Stafford H. Plenum Press; New York: 1993: 167
  • 5 Lepoittevin J.-P, Berl V, Giménez-Arnau E. Chem. Rec. 2009; 9: 258
    • 6a Mandal SK, Amin SR, Crowe WE. J. Am. Chem. Soc. 2001; 123: 6457
    • 6b Zhu Y.-L, Xiang H.-W, Wu G.-S, Bai L, Li Y.-W. Chem. Commun. 2002; 254
    • 6c Sha W, Zhang W, Ni S, Mei H, Han J, Pan Y. J. Org. Chem. 2017; 82: 9824
    • 6d Paz Muñoz M, Lloyd-Jones GC. Eur. J. Org. Chem. 2009; 516
    • 6e Keshavarz M, Ahmady AZ, Mostoufi A, Mohtasham N. Molecules 2017; 22: 1385
    • 6f Maslak V, Matović R, Saičić RN. Tetrahedron 2004; 60: 8957
    • 7a Yang C.-G, Reich NW, Shi Z, He C. Org. Lett. 2005; 7: 4553
    • 7b Taylor JG, Whittall N, Hii KK. Chem. Commun. 2005; 5103
    • 7c Adrio LA, Quek LS, Taylor JG, Hii KK. Tetrahedron 2009; 65: 10334
    • 7d Amos RA, Katzenellenbogen JA. J. Org. Chem. 1978; 43: 560
    • 8a Qian H, Han X, Wildenhoefer RA. J. Am. Chem. Soc. 2004; 126: 9536
    • 8b Coulombel L, Favier I, Dunach E. Chem. Commun. 2005; 2286
    • 8c Oe Y, Ohta T, Ito Y. Synlett 2005; 179
    • 8d Komeyama K, Morimoto T, Nakayama Y, Takaki K. Tetrahedron Lett. 2007; 48: 3259
    • 8e Kamiya I, Tsunoyama H, Tsukuda T, Sakurai H. Chem. Lett. 2007; 36: 646
    • 8f Shigehisa H, Hayashi M, Ohkawa H, Suzuli T, Okayasu H, Mukai M, Yamazaki A, Kawai R, Kikuchi H, Satoh Y, Fukuyama A, Hiroya K. J. Am. Chem. Soc. 2016; 138: 10597
    • 8g Ferrand L, Tang Y, Aubert C, Fensterbank L, Mouriès-Mansuy V, Petit M, Amatore M. Org. Lett. 2017; 19: 2062
    • 8h Qi C, Yang S, Gandon V, Leboeuf D. Org. Lett. 2019; 21: 7405
    • 9a For reviews, see: Szostak M, Fazakerley NJ, Parmar D, Proctor DJ. Chem. Rev. 2014; 114: 5959 ; and references cited therein
    • 9b Molander GA, Harris CR. Chem. Rev. 1996; 96: 307
    • 9c Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
    • 10a Kobayashi S. Eur. J. Org. Chem. 1999; 15
    • 10b Ishihara K, Kubota M, Kurihara H, Yamamoto H. J. Org. Chem. 1996; 61: 4560
    • 10c Giuseppone N, Schmitt J.-L, Schwartz E, Lehn J.-M. J. Am. Chem. Soc. 2005; 127: 5528
  • 11 For a review, see: Kobayashi S, Sugiura M, Kitagawa H, Lam WW.-L. Chem. Rev. 2002; 102: 2227 ; and references cited therein
    • 12a Midland MM, Graham RS. J. Am. Chem. Soc. 1984; 106: 4294
    • 12b Castellino S, Sims JJ. Tetrahedron Lett. 1984; 25: 4059
    • 12c Bednarski M, Danishefsky S. J. Am. Chem. Soc. 1983; 105: 3716
    • 12d Levin JI. Tetrahedron Lett. 1989; 30: 2355
    • 12e Terada M, Nakai T, Mikami K. Inorg. Chim. Acta 1994; 222: 377
    • 12f Pellissier H. Coord. Chem. Rev. 2017; 336: 96
  • 13 Typical Procedure for the Preparation of Reference Compound 5-Methyl-4-phenyldihydrofuran-2(3H)-one (2a) A chlorobenzene (0.2 M) solution of the 3-phenylpent-4-enoic acid (1a, 50 mg, 0.284 mmol) was taken in a 10 mL sealed tube, and Eu(OTf)3 (5 mol%) was added to it. Nitrogen gas was flushed into it; the tube was closed and placed it in a silicon oil bath. After 7 h heating the starting material was completely consumed as indicated by TLC, and the reaction was quenched by adding water. Compound was extracted with ethyl acetate (3 × 20 mL). Combined organic layer was washed with brine solution, dried over sodium sulfate, and evaporated to dryness. The crude product was purified on silica gel (mesh 100–200) column chromatography using ethyl acetate in petroleum ether (1:2) as eluent to afford 2a (35 mg, 70%) as yellow oil. IR: 1775 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.39–7.24 (m, 5 H), 4.55 (ddd, J = 12, 8.6, 6.2 Hz, 1 H), 3.25 (td, J = 11.2, 6.2 Hz, 1 H), 2.95 (dd, J = 16, 8.4 Hz, 1 H), 2.79 (dd, J = 16, 11.2 Hz, 1 H), 1.42 (d, J = 6.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 175.5, 138.2, 129.1, 127.8, 83.2, 49.7, 37.5, 19.2. HRMS: m/z [M + H]+ – H2O calcd for C11H12O2: 159.0837; found: 159.0843.