Synthesis 2020; 52(13): 1934-1946
DOI: 10.1055/s-0040-1707524
paper
© Georg Thieme Verlag Stuttgart · New York

Allyl 4-Chlorophenyl Sulfone as a Versatile 1,1-Synthon for Sequential α-Alkylation/Cobalt-Catalyzed Allylic Substitution

Tomoyuki Sekino
,
Shunta Sato
,
Kazuki Kuwabara
,
Koji Takizawa
,
,
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan   Email: m-kojima@pharm.hokudai.ac.jp   Email: smatsuna@pharm.hokudai.ac.jp
,
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan   Email: m-kojima@pharm.hokudai.ac.jp   Email: smatsuna@pharm.hokudai.ac.jp
› Author Affiliations
This work was supported in part by Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP15H05802 in Precisely Designed Catalysts with Customized Scaffolding, JSPS KAKENHI Grant Number JP17H03049 and JP18H06097). T.S. thanks the Pharmaceutical Society of Japan for a fellowship (Nagai Memorial Research Scholarship).
Further Information

Publication History

Received: 12 March 2020

Accepted after revision: 06 April 2020

Publication Date:
27 April 2020 (online)


Abstract

Despite their unique potential as rare 1,1-dipole synthons, allyl sulfones are rarely used in target-oriented syntheses, likely due to the lack of a general catalytic method for their branch-selective allylic substitution. Herein, we identified allyl 4-chlorophenyl sulfone as a versatile linchpin for both base-mediated α-derivatization and subsequent cobalt-catalyzed allylic substitution. The sequential transformations allow for highly regioselective access to branched allylic substitution products with a variety of aliphatic side chains. The photoredox-enabled­ ­cobalt catalysis is indispensable for achieving high yields and regioselectivity­ for the desulfonylative substitution in contrast to traditional metal-catalyzed protocols, which lead to inferior outcomes in the corresponding transformations.

Supporting Information

 
  • References

  • 2 For a selected review on ruthenium-catalyzed allylic substitution, see: Kitamura M, Miyata K, Seki T, Vatmurge N, Tanaka S. Pure Appl. Chem. 2013; 85: 1121

    • For selected reviews on rhodium-catalyzed allylic substitution, see:
    • 3a Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
    • 3b Thoke MB, Kang Q. Synthesis 2019; 51: 2585

    • For selected examples, see:
    • 3c Evans PA, Nelson JD. J. Am. Chem. Soc. 1998; 120: 5581
    • 3d Li C, Breit B. Chem. Eur. J. 2016; 22: 14655
    • 3e Tang S.-B, Zhang X, Tu H.-F, You S.-L. J. Am. Chem. Soc. 2018; 140: 7737

      For selected reviews on iridium-catalyzed allylic substitution, see:
    • 4a Helmchen G, Dahnz A, Dübon P, Schelwies M, Weihofen R. Chem. Commun. 2007; 675
    • 4b Takeuchi R, Kezuka S. Synthesis 2006; 3349
    • 4c Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
    • 4d Hethcox JC, Shockley SE, Stoltz BM. ACS Catal. 2016; 6: 6207
    • 4e Qu J, Helmchen G. Acc. Chem. Res. 2017; 50: 2539
    • 4f Shockley SE, Hethcox JC, Stoltz BM. Synlett 2018; 29: 2481
    • 4g Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
    • 4h Rössler SL, Petrone DA, Carreira EM. Acc. Chem. Res. 2019; 52: 2657

    • For selected examples, see:
    • 4i Takeuchi R, Kashio M. Angew. Chem. Int. Ed. 1997; 36: 263
    • 4j Janssen JP, Helmchen G. Tetrahedron Lett. 1997; 38: 8025
    • 4k Ohmura T, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 15164
    • 4l Tissot-Croset K, Polet D, Alexakis A. Angew. Chem. Int. Ed. 2004; 43: 2426
    • 4m Defieber C, Ariger MA, Moriel P, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
    • 4n Liu W.-B, Zheng C, Zhuo C.-X, Dai L.-X, You S.-L. J. Am. Chem. Soc. 2012; 134: 4812
    • 4o Liu W.-B, Reeves CM, Virgil SC, Stoltz BM. J. Am. Chem. Soc. 2013; 135: 10626
    • 4p Meza AT, Wurm T, Smith L, Kim SW, Zbieg JR, Stivala CE, Krische MJ. J. Am. Chem. Soc. 2018; 140: 1275
  • 5 Trost BM. Bull. Chem. Soc. Jpn. 1988; 61: 107
  • 6 For a selected review on the successive transformations of organosulfones, see: Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193

    • For selected recent examples of desulfonylative cross-coupling, see:
    • 7a Merchant RR, Edwards JT, Qin T, Kruszyk MM, Bi C, Che G, Bao D.-H, Qiao W, Sun L, Collins MR, Fadeyi OO, Gallego GM, Mousseau JJ, Nuhant P, Baran PS. Science 2018; 360: 75
    • 7b Nambo M, Yim JC.-H, Freitas LB. O, Tahara Y, Ariki ZT, Maekawa Y, Yokogawa D, Crudden CM. Nat. Commun. 2019; 10: 4528
  • 8 Trost BM, Schmuff NR, Miller MJ. J. Am. Chem. Soc. 1980; 102: 5979

    • For examples of 1,1-dipole synthon in multistep synthesis, see:
    • 9a Trost BM, Quayle P. J. Am. Chem. Soc. 1984; 106: 2469
    • 9b Trost BM, Ghadiri MR. J. Am. Chem. Soc. 1984; 106: 7260
    • 9c Sato T, Okura S, Otera J, Nozaki H. Tetrahedron Lett. 1987; 28: 6299
    • 9d Katritzky AR, Wang X, Xie L, Toader D. J. Org. Chem. 1998; 63: 3445
    • 9e Katritzky AR, Luo Z, Fang Y, Steel PJ. J. Org. Chem. 2001; 66: 2858
  • 10 Trost BM, Merlic CA. J. Org. Chem. 1990; 55: 1127

    • For a selected review on molybdenum-catalyzed allylic substitution, see:
    • 11a Belda O, Moberg C. Acc. Chem. Res. 2004; 37: 159

    • For selected examples, see:
    • 11b Trost BM, Lautens M. J. Am. Chem. Soc. 1982; 104: 5543
    • 11c Trost BM, Hachiya I. J. Am. Chem. Soc. 1998; 120: 1104
    • 11d Glorius F, Pfaltz A. Org. Lett. 1999; 1: 141
    • 11e Malkov AV, Gouriou L, Lloyd-Jones GC, Starý I, Langer V, Spoor P, Vinader V, Kočovský P. Chem. Eur. J. 2006; 12: 6910
  • 12 Takizawa K, Sekino T, Sato S, Yoshino T, Kojima M, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 9199

    • For selected reviews on photoredox/transition-metal dual catalysis, see:
    • 13a Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 13b Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 13c Hopkinson MN, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 49: 2261
    • 13d Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; DOI: 10.1038/s41570-017-0052.

      For selected reviews on the merger of photoredox and cobalt catalysis, see:
    • 14a Cartwright KC, Davies AM, Tunge JA. Eur. J. Org. Chem. 2020; 1245
    • 14b Kojima M, Matsunaga S. Trends Chem. 2020; 2: 410

    • For selected examples, see:
    • 14c Ruhl KE, Rovis T. J. Am. Chem. Soc. 2016; 138: 15527
    • 14d Thullen SM, Rovis T. J. Am. Chem. Soc. 2017; 139: 15504
    • 14e Call A, Casadevall C, Acuña-Parés F, Casitas A, Lloret-Fillol J. Chem. Sci. 2017; 8: 4739
    • 14f Hou J, Ee A, Feng W, Xu J.-H, Zhao Y, Wu J. J. Am. Chem. Soc. 2018; 140: 5257
    • 14g Hu X, Zhang G, Bu F, Lei A. Angew. Chem. Int. Ed. 2018; 57: 1286
    • 14h Sun X, Chen J, Ritter T. Nat. Chem. 2018; 10: 1229
    • 14i Cartwright KC, Tunge JA. ACS Catal. 2018; 8: 11801
    • 14j Kalsi D, Dutta S, Barsu N, Rueping M, Sundararaju B. ACS Catal. 2018; 8: 8115
    • 14k Ravetz BD, Wang JY, Ruhl KE, Rovis T. ACS Catal. 2019; 9: 200
    • 14l Meng Q.-Y, Schirmer TE, Katou K, König B. Angew. Chem. Int. Ed. 2019; 58: 5723

      For selected examples of metallaphotoredox-catalyzed allylation, see:
    • 15a Lang SB, O’Nele KM, Tunge JA. J. Am. Chem. Soc. 2014; 136: 13606
    • 15b Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem. Eur. J. 2015; 21: 18589
    • 15c Xuan J, Zeng T.-T, Feng Z.-J, Deng Q.-H, Chen J.-R, Lu L.-Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2015; 54: 1625
    • 15d Matsui JK, Gutiérrez-Bonet Á, Rotella M, Alam R, Gutierrez O, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 15847
    • 15e Zhang H.-H, Zhao J.-J, Yu S. J. Am. Chem. Soc. 2018; 140: 16914
    • 15f Zheng J, Breit B. Angew. Chem. Int. Ed. 2019; 58: 3392

      For selected reviews on photoredox catalysis, see:
    • 16a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 16b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 16c Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 16d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 16e Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193

      For selected examples of cobalt-catalyzed allylic substitution, see:
    • 17a Roustan JL, Mérour JY, Houlihan F. Tetrahedron Lett. 1979; 20: 3721
    • 17b Bhatia B, Reddy MM, Iqbal J. Tetrahedron Lett. 1993; 34: 6301
    • 17c Sun M, Chen J.-F, Chen S, Li C. Org. Lett. 2019; 21: 1278
    • 17d Ghorai S, Chirke SS, Xu W.-B, Chen J.-F, Li C. J. Am. Chem. Soc. 2019; 141: 11430
  • 18 Isomerization of product 5 to vinyl sulfone was observed when the reaction was quenched with aqueous NH4Cl. See the Supporting Information for details.
  • 19 It was confirmed in the control experiments that all the catalyst components (cobalt salt, photocatalyst, iPr2NEt) and visible light irradiation were necessary for the allylic substitution of 5. See the Supporting Information for details.
  • 20 Our preliminary studies revealed that (S)-6fa was obtained in 90% ee when (S,S)-BDPP was used instead of dppp. See the Supporting Information for details.
  • 21 Tamura R, Kai Y, Kakihana M, Hayashi K, Tsuji M, Nakamura T, Oda D. J. Org. Chem. 1986; 51: 4375
  • 22 Babu KN, Roy A, Singh M, Bisai A. Org. Lett. 2018; 20: 6327
  • 23 Du Y, Yu A, Jia J, Zhang Y, Meng X. Chem. Commun. 2017; 53: 1684
  • 24 Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2010; 49: 8938
  • 25 Ellwood AR, Porter MJ. J. Org. Chem. 2009; 74: 7982
  • 26 Nisnevich G, Kulbitski K, Gandelman M. PCT Int. Appl WO 2015068159 A2, 2015
  • 27 Moriya T, Yoneda S, Kawana K, Ikeda R, Konakahara T, Sakai N. J. Org. Chem. 2013; 78: 10642
  • 28 Avery MA, Alvim-Gaston M, Vroman JA, Wu B, Ager A, Peters W, Robinson BL, Charman W. J. Med. Chem. 2002; 45: 4321
  • 29 Kotake Y, Iijima A, Yoshimatsu K, Tamai N, Ozawa Y, Koyanagi N, Kitoh K, Nomura H. J. Med. Chem. 1994; 37: 1616
  • 30 Kawashima S, Aikawa K, Mikami K. Eur. J. Org. Chem. 2016; 3166
  • 31 Newcomb LF, Haque TS, Gellman SH. J. Am. Chem. Soc. 1995; 117: 6509
  • 32 Frøyen P, Juvvik P. Phosphorus, Sulfur Silicon Relat. Elem. 1996; 116: 217
  • 33 Blacker AJ, Clarke ML, Loft MS, Mahon MF, Humphries ME, Williams JM. J. Chem. Eur. J. 2000; 6: 353
  • 34 Stanley LM, Bai C, Ueda M, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 8918
  • 35 Devine SK. J, Van Vranken DL. Org. Lett. 2008; 10: 1909