Synlett 2021; 32(01): 81-85
DOI: 10.1055/s-0040-1707310
letter

Dual Roles of Rongalite: Reductive Coupling Reaction to Construct Thiosulfonates Using Sulfonyl Hydrazides

Guofu Zhang
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: gfzhang@zjut.edu.cn   Email: dingcr@zjut.edu.cn
,
Qiankun Fan
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: gfzhang@zjut.edu.cn   Email: dingcr@zjut.edu.cn
,
Yiyong Zhao
b   Zhejiang Ecological Environment Low Carbon Development Center, Hangzhou 310012, P. R. of China
,
Huimin Wang
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: gfzhang@zjut.edu.cn   Email: dingcr@zjut.edu.cn
,
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: gfzhang@zjut.edu.cn   Email: dingcr@zjut.edu.cn
› Author Affiliations
We acknowledge financial support from the National Natural Science Foundation of China (20702051), the Natural Science Foundation of Zhejiang Province (LY13B020017).


Abstract

A tunable and practical transformation of structurally diverse sulfonyl hydrazides into thiosulfonates in the presence of Rongalite (NaHSO2·CH2O) was developed. Transition-metal-free conditions, operational simplicity, and readily available reagents are the striking features of this protocol. It is the first example for the synthesis of thiosulfonates using sulfonyl hydrazides with the assistance of reductant. Additionally, the mechanistic studies revealed that this transformation probably undergoes via a reducing–coupling pathway.

Supporting Information



Publication History

Received: 21 July 2020

Accepted after revision: 04 September 2020

Article published online:
09 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Block E. Angew. Chem. Int. Ed. 1992; 31: 1135
    • 1b McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239
    • 1c Lin G.-Q, Xu M.-H, Zhong Y.-W, Sun X.-W. Acc. Chem. Res. 2008; 41: 831
    • 1d Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
    • 1e Omann L, Königs CD. F, Klare HF. T, Oestreich M. Acc. Chem. Res. 2017; 50: 1258
    • 1f Liu Q.-F, Huang F.-B, Yuan X.-J, Wang K, Zou Y, Shen J.-H, Xu Y.-C. J. Med. Chem. 2017; 60: 10231
    • 1g Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
    • 1h Feng M.-H, Tang B.-Q, Liang SH, Jiang X.-F. Curr. Top. Med. Chem. 2016; 16: 1200
    • 1i Wang N.-Z, Saidhareddy P, Jiang X.-F. Nat. Prod. Rep. 2020; 37: 246
    • 2a Weidner JP, Block SS. J. Med. Chem. 1964; 7: 671
    • 2b Block E. Angew. Chem., Int. Ed. Engl. 1992; 31: 1135
    • 2c Wang H.-M, Mao Y, Chen AY, Zhou N, Lavoie EJ, Liu LF. Biochemistry 2001; 40: 3316
    • 2d Steudel R. Chem. Rev. 2002; 102: 3905
    • 2e Alcaraz M.-L, Atkinson S, Cornwall P, Foster AC, Gill DM, Humphries LA, Keegan PS, Kemp R, Merifield E, Nixon RA, Noble AJ, O’Beirne D, Patel ZM, Perkins J, Rowan P, Sadler P, Singleton JT, Tornos J, Watts AJ, Woodland IA. Org. Process Res. Dev. 2005; 9: 555
    • 2f Sotirova A, Avramova T, Stoitsova S, Lazarkevich I, Lubenets V, Karpenko E, Galabova D. Curr. Microbiol. 2012; 65: 534
    • 2g Smith M, Hunter R, Stellenboom N, Kusza DA, Parker MI, Hammouda AN. H, Jackson G, Kaschula CH. Biochim. Biophys. Acta 2016; 1860: 1439
    • 2h Mai S, Song Q. Angew. Chem. Int. Ed. 2017; 56: 7952
    • 3a Zefirov NS, Zyk NV, Beloglazkina EK, Kutateladze AG. Sulfur Rep. 1993; 14: 223
    • 3b Gallardo-Godoy A, Torres-Altoro MI, White KJ, Barker EL, Nichols DE. Bioorg. Med. Chem. 2007; 15: 305
    • 3c Sugata K, Song L, Nakamura M, Ueki S, Fajer PG, Arata T. J. Mol. Biol. 2009; 386: 626
    • 4a Ranasinghe MG, Fuchs PL. Synth. Commun. 1988; 18: 227
    • 4b Kim S, Otsuka N, Ryu I. Angew. Chem. Int. Ed. 2005; 44: 6183
    • 4c Wang W.-G, Peng X.-L, Wei FC.-H, Tung C.-H, Xu Z.-H. Angew. Chem. Int. Ed. 2016; 55: 649
    • 4d Mampuys P, Zhu Y, Sergeyev S, Ruijter E, Orru RV. A, Doorslaer SV, Maes BU. W. Org. Lett. 2016; 18: 2808
    • 5a Field L, Parsons TF. J. Org. Chem. 1965; 30: 657
    • 5b Kirn YH, Takata T, Oae S. Tetrahedron Lett. 1978; 19: 2305
    • 5c Nair VA, Augustine A. Org. Lett. 2003; 5: 543
    • 5d Cai M.-T, Lv G.-S, Chen J.-X, Gao W.-X, Ding J.-C, Wu H.-Y. Chem. Lett. 2010; 39: 368
    • 5e Kirihara M, Naito M, Ishizuka Y, Hanai H, Noguchi T. Tetrahedron Lett. 2011; 52: 3086
    • 5f Mandala B, Basu B. RSC Adv. 2014; 4: 13854
    • 5g Shyam PK, Kim YK, Lee C, Jang H.-Y. Adv. Synth. Catal. 2016; 358: 56
    • 5h Li X.-J, Zhou C, Diao P.-H, Ge Y.-Q, Guo C. Tetrahedron Lett. 2017; 58: 1296
    • 6a Lehto EA, Shirley DA. J. Org. Chem. 1957; 22: 1254
    • 6b Liu Y, Zhang Y. Tetrahedron Lett. 2003; 44: 4291
    • 6c Iwata S, Senoo M, Hata T, Urabe H. Heteroat. Chem. 2013; 24: 336
    • 6d Mahieu JP, Gosselet M, Sebille B, Beuzard J. Synth. Commun. 1986; 16: 1709
    • 6e Zefirov NS, Zyk NS, Beloglazkina EK, Kutaeladze AG. K. Sulfur Rep. 1993; 14: 223
    • 6f Pham HT, Nguyen N.-LT, Duus F, Luu TX. T. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 1934
    • 7a Woodward RB, Pachter IJ, Scheinbaum ML. Org. Synth. 1974; 54: 33
    • 7b Seiichi T, Kou H, Kunio O. Chem. Lett. 1983; 12: 255
    • 7c Gamblin DP, Garnier P, Ward SJ, Oldham NJ, Fairbanks AJ, Davis BG. Org. Biomol. Chem. 2003; 1: 3642
    • 7d Semenyuk A, Földesi A, Johansson T, Estmer-Nilsson C, Blomgren P, Brännvall M, Kirsebom LA, Kwiatkowski M. J. Am. Chem. Soc. 2006; 128: 12356
    • 7e Salvadó M, Amgarten B, Castillón S, Bernardes GJ. L, Boutureira O. Org. Lett. 2015; 17: 2836
    • 7f Musiejuk M, Doroszuk J, Witt D. RSC Adv. 2018; 8: 9718
    • 8a Bentley MD, Douglass IB, Lacadie JA. J. Org. Chem. 1972; 37: 333
    • 8b Billard T, Langlois BR. J. Fluorine Chem. 1997; 84: 63
    • 8c Liang G.-G, Liu M.-C, Chen J.-X, Ding J.-C, Gao W.-X, Wu H.-Y. Chin. J. Chem. 2012; 30: 1611
  • 9 Mampuys P, McElroy CR, Clark JH, Orru RV. A, Maes BU. W. Adv. Synth. Catal. 2020; 362: 3
    • 10a Klahn P, Duschek A, Liebert C, Kirsch SF. Org. Lett. 2012; 14: 1250
    • 10b Xu W.-B, Wu S.-M, Zhou L.-L, Liang G.-X. Org. Lett. 2013; 15: 1978
    • 10c Kirillova MS, Muratore ME, Dorel R, Echavarren AM. J. Am. Chem. Soc. 2016; 138: 3671
    • 10d Xu W, Zhao J.-F, Tao C, Wang H.-F, Li Y, Cheng B, Zhai H.-B. Org. Lett. 2018; 20: 1509
    • 10e Chen Q, Huang Y.-L, Wang X. -F, Wu J.-W, Yu G.-D. Org. Biomol. Chem. 2018; 16: 1713
    • 10f Peng Z.-H, Zheng X, Zhang Y.-J, An D.-L, Dong W.-R. Green Chem. 2018; 20: 1760
  • 11 Meier H, Menzel I. Synthesis 1972; 267
  • 12 Li X.-J, Zhou C, Diao P.-H, Ge Y.-Q, Guo C. Tetrahedron Lett. 2017; 58: 1296
  • 13 Zhou G, Xu X.-D, Chen G.-P, Wei W.-T, Guo Z. Synlett 2018; 29: 2076
  • 14 Kim J, Park S, Kim H, Kim J. Tetrahedron Lett. 2020; 61: 152112
    • 15a Du B.-N, Li Z, Qian P, Han J.-L, Pan Y. Chem. Asian J. 2016; 11: 478
    • 15b Yang Y, Bao Y.-J, Guan Q.-Q, Sun Q, Zha Z.-G, Wang Z.-Y. Green Chem. 2017; 19: 112
    • 16a Zheng Y, Qing F.-L, Huang Y.-G, Xu X.-H. Adv. Synth. Catal. 2016; 358: 3477
    • 16b Zhao X.-N, Liu T.-X, Zhang G.-S. Asian J. Org. Chem. 2017; 6: 677
    • 16c Cao L, Luo S.-H, Jiang K, Hao Z.-F, Wang B.-W, Pang C.-M, Wang Z.-Y. Org. Lett. 2018; 20: 4754
    • 16d Mo Z, Swaroop TR, Tong W, Zhang Y, Tang H, Pan Y, Sun H, Chen Z. Green Chem. 2018; 20: 4428
    • 16e Chen Q, Huang Y.-L, Wang X.-F, Wu J.-W, Yu G.-D. Org. Biomol. Chem. 2018; 16: 1713
    • 16f Zhang X.-F, Cui T, Zhang Y.-H, Gu W.-J, Liu P, Sun P.-P. Adv. Synth. Catal. 2019; 361: 2014
    • 16g Zhao S.-T, Chen K.-J, Zhang L, Yang W.-G, Huang D.-Y. Adv. Synth. Catal. 2020; 362: 3516
    • 16h Wang M, Fan Q.-L, Jiang X.-F. Green Chem. 2018; 20: 5469
    • 16i Chen S.-H, Li Y.-P, Wang M, Jiang X.-F. Green Chem. 2020; 22: 322
    • 16j Meng Y.-Y, Wang M, Jiang X.-F. Angew. Chem. Int. Ed. 2020; 59: 1346
    • 16k Li Y.-P, Chen S.-H, Wang M, Jiang X.-F. Angew. Chem. Int. Ed. 2020; 59: 8907
    • 16l Tan H.-Y, Houpis I, Liu R.-M, Wang Y.-C, Chen Z.-L. Org. Lett. 2015; 17: 3548
    • 16m Patel PK, Dalvadi JP, Chikhalia KH. RSC Adv. 2014; 4: 55354
    • 16n Ojha DP, Prabhu KR. J. Org. Chem. 2012; 77: 11027
    • 16o Still IW. J, Watson ID. G. Synth. Commun. 2001; 31: 1355
    • 17a Yang Y, Tang L, Zhang S, Guo X, Zha Z, Wang Z. Green Chem. 2014; 16: 4106
    • 17b Li W, Gao L.-F, Zhuge W.-Y, Sun X, Zheng G.-X. Org. Biomol. Chem. 2017; 15: 7819
    • 17c Li Y, Yu J, Bi Y.-C, Yan G.-B, Huang D.-Y. Adv. Synth. Catal. 2019; 361: 4839
  • 18 S-(p-Tolyl) 4-Methylbenzenesulfonothioate (2a): Typical Procedure A mixture of 1a (0.2 mmol), NaHSO2·CH2O (0.4 mmol, 47.2 mg), and benzotrifluoride (1.0 mL) in a 15 mL flask was heated at 80 °C under air for 5 h. The reaction mixture was cooled to room temperature, poured into H2O (10 mL) and extracted with EtOAc (20 mL). The organic layers were dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to yield 2a as a white solid; yield: 51mg (91%).1H NMR (500 MHz, CDCl3): δ = 7.47 (d, J = 8.3 Hz, 2 H), 7.29–7.20 (m, 4 H), 7.15 (d, J = 8.0 Hz, 2 H), 2.43 (s, 3 H), 2.39 (s, 3 H).13C NMR (126 MHz, CDCl3): δ = 144.56, 142.01, 140.43, 136.45, 130.17, 129.33, 127.56, 124.56, 124.56, 21.63, 21.45. HRMS (EI-TOF): m/z calcd for C14H14O2S2: 278.0435; found: 278.0466.