Synlett 2020; 31(18): 1809-1812
DOI: 10.1055/s-0040-1707257
letter

Regioselective Biomimetic Synthesis of Dimeric Oxyresveratrol Derivatives

Lu Ran
,
Hongpeng Li
,
Ge Chao
,
Xiaodong Kang
,
Tian Lei
,
Wenling Li
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. of China
› Author Affiliations
This research work was financially supported by the National Natural Science Foundation of China (No. 21462024).


Abstract

Oxyresveratrol and its methylated derivative as coupling precursors were efficiently prepared in four steps, with Wittig reactions and subsequent isomerization reactions as the key steps. The coupling reactions of oxyresveratrol under various oxidative conditions gave a complex and inseparable mixture of coupling products. The oxidative dimerizations of methylated oxyresveratrols catalyzed by horseradish peroxidase–H2O2 or FeCl3·6H2O in an acetone system predominantly produced the 8–5-coupled and 8–10-coupled dihydrobenzofuran-type dimers, respectively. This regioselective biomimetic strategy might be useful in synthesizing other dimeric oxyresveratrol derivatives.

Supporting Information



Publication History

Received: 08 July 2020

Accepted: 03 August 2020

Article published online:
01 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Hu ST, Zheng ZP, Zhang XC, Chen F, Wang MF. J. Funct. Foods 2015; 13: 375
    • 1b Soekamtoa NH, Achmad SA, Ghisalberti EL, Hakim EH, Syah YM. Indones. J. Chem. 2005; 5: 207
    • 1c Xu L, Liu C, Xiang W, Chen H, Qin X, Huang X. Int. J. Pharmacol. 2014; 10: 44
    • 2a Aftaba N, Likhitwitayawuid K, Vieira A. Nat. Prod. Res. 2010; 24: 1726
    • 2b Chatsumpun N, Chuanasa T, Sritularak B, Lipipun V, Jongbunprasert V, Ruchirawat S, Ploypradith P, Likhitwitayawuid K. Molecules 2016; 21: 489
    • 2c Galindo I, Hernáez B, Berná J, Fenoll J, Cenis JL, Escribano JM, Alonso C. Antiviral Res. 2011; 91: 57
    • 2d Mei M, Ruan J.-Q, Wu W.-J, Zhou R.-N, Lei JP.-C, Zhao H.-Y, Yan R, Wang Y.-T. J. Agric. Food Chem. 2012; 60: 2299
    • 2e Likhitwitayawuid K, Sornsute A, Sritularak B, Ploypradith P. Bioorg. Med. Chem. Lett. 2006; 16: 5650
    • 3a Likhitwitayawuid K, Sritularak B. J. Nat. Prod. 2001; 64: 1457
    • 3b Choa HM, Haa TK. Q, Phama HT. T, Ana J.-P, Huha J, Leea B.-W, Leea HJ, Oh WK. Phytochemistry 2019; 165: 112044
    • 3c Tanaka T, Iliya I, Ito T, Furusawa M, Nakaya K, Ionuma M, Shirataki Y, Matsuura N, Ubukata M, Murata J, Simozono F, Hirai K. Chem. Pharm. Bull. 2001; 49: 858
    • 3d Li X.-m, Lin M, Wang Y.-h, Liu X. Planta Med. 2004; 70: 160

      For reviews, see:
    • 4a Sotheeswaran S, Pasupathy V. Phytochemistry 1993; 32: 1083
    • 4b Lin M, Yao C.-S. Stud. Nat. Prod. Chem. 2006; 33: 601
    • 4c Shen T, Wang X.-N, Lou H.-X. Nat. Prod. Rep. 2009; 26: 916
    • 4d Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Angew. Chem. Int. Ed. 2011; 50: 586
    • 4e Snyder SA, ElSohly AM, Kontes F. Nat. Prod. Rep. 2011; 28: 897
    • 4f Synder SA. Recent Adv. Polyphenol Res. 2012; 3: 311
    • 4g Velu SS, Thomas NF, Weber JF. Curr. Org. Chem. 2012; 16: 605
    • 4h Li WL, Zang P, Li HF, Yang SX. Prog. Chem. 2012; 24: 545
    • 4i Li W, Lv T, Yang Y, Yang Y. Youji Huaxue 2013; 33: 2443
    • 4j Keylor MH, Matsurra BS, Stephenson CR. J. Chem. Rev. 2015; 115: 8976
    • 4k Wang X.-F, Yao C.-S. J. Asian Nat. Prod. Res. 2016; 18: 376
  • 5 Li Z, Kang S, Chen L, Wang Y, Li J. Youji Huaxue 2016; 36: 1143
    • 6a Sun H.-Y, Xiao C.-F, Wei W, Chen Y, Lü Z.-L, Zou Y. Youji Huaxue 2010; 30: 1574
    • 6b Sun H.-Y, Xiao C.-F, Cai Y.-C, Chen Y, Wei W, Liu X.-K, Lv Z.-L, Zou Y. Chem. Pharm. Bull. 2010; 58: 1492
    • 7a Lee SK, Nam KA, Hoe YH, Min H.-Y, Kim E.-Y, Ko H, Song S, Lee T, Kim S. Arch. Pharm. Res. 2003; 26: 253
    • 7b Reimann E. Tetrahedron Lett. 1970; 4051
    • 8a Bates RB, Caldera S, Deshpande VH, Malik BL, Paknikar SK. J. Nat. Prod. 1997; 60: 1041
    • 8b Alesso EN, Finkielsztein LM, Lantaño B, Aguirre JM, Iglesias GY. M. J. Chem. Res., Synop. 1999; 23: 302
    • 9a Li W, Li H, Luo Y, Yang Y, Wang N. Synlett 2010; 1247
    • 9b Li W, Luo Y, Li H, Zang P, Han X. Synthesis 2010; 3822
    • 9c Li W, Yang S, Lv T, Yang Y. Org. Biomol. Chem. 2014; 12: 2273
    • 9d Yang Y, Liu Q, Chen P, Li W. Tetrahedron Lett. 2014; 55: 4455
    • 9e Li W, Chen P, Yang Y, Liu X, Dong T. Tetrahedron 2016; 72: 210
    • 9f Li W, Dong T, Chen PL, Liu X, Liu M, Han X. Tetrahedron 2017; 73: 3056
    • 9g Liu M, Guan X, Shao Z, Li W. Tetrahedron 2018; 74: 4013
    • 9h Guan X, Liu M, Shao Z, Li H, Ran L, Li W. Synthesis 2019; 51: 1825
  • 10 Li W, Li H, Li Y, Hou Z. Angew. Chem. Int. Ed. 2006; 45: 7609
  • 11 Yu J, Gaunt MJ, Spencer JB. J. Org. Chem. 2002; 67: 4627
  • 12 Alonso F, Riente P, Yus M. Eur. J. Org. Chem. 2009; 34: 6034
    • 13a Correa A, Mancheño O G, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 13b Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
  • 14 5-[(E)-2-(4-Hydroxy-2-methoxyphenyl)ethenyl]benzene-1,3-diol [(E)-15] Pale-yellow oil; yield: 1.77 g (91%). 1H NMR (500 MHz, acetone-d 6): δ = 3.85 (s, 3 H), 6.24 (t, J = 2.0 Hz, 1 H), 6.46 (dd, J = 8.5, 2.0 Hz, 1 H), 6.49 (d, J = 2.0 Hz, 1 H), 6.52 (d, J = 2.0 Hz, 2 H), 6.88 (d, J = 16.5 Hz, 1 H), 7.30 (d, J = 16.5 Hz, 1 H), 7.45 (d, J = 8.5 Hz, 1 H), 8.16 (br s, 2 H), 8.51 (br s, 1 H). 13C NMR (125 MHz, acetone-d 6): δ = 55.8, 99.8, 99.9, 102.4, 105.5 (2 C), 108.5, 118.7, 123.9, 126.8, 127.9, 141.5, 159.2, 159.5, 159.6. HRMS (ESI): m/z [M –H]+ calcd for C15H13O4: 257.08193; found: 257.08191.
  • 15 5-{(E)-2-[3-(3,5-Dihydroxyphenyl)-2-(4-hydroxy-2-methoxyphenyl)-6-methoxy-2,3-dihydro-1-benzofuran-5-yl]ethenyl}benzene-1,3-diol (16) Yellowish amorphous powder; yield: 31 mg (62%). 1H NMR (500 MHz, acetone-d 6): δ = 3.77 (s, 3 H), 3.94 (s, 3 H), 4.36 (d, J = 5.0 Hz, 1 H), 5.73 (d, J = 5.0 Hz, 1 H), 6.21 (d, J = 2.0 Hz, 2 H), 6.23 (t, J = 2.0 Hz, 1 H), 6.24 (t, J = 2.0 Hz, 1 H), 6.40 (dd, J = 8.5, 2.0 Hz, 1 H), 6.50 (d, J = 2.0 Hz, 2 H), 6.52 (d, J = 2.0 Hz, 1 H), 6.64 (d, J = 2.0 Hz, 1 H), 6.84 (d, J = 16.5 Hz, 1 H), 7.12 (d, J = 8.5 Hz, 1 H), 7.32 (d, J = 2.0 Hz, 1 H), 7.35 (d, J = 16.5 Hz, 1 H), 8.15 (br s, 2 H), 8.16 (br s, 2 H), 8.46 (br s, 1 H). 13C NMR (125 MHz, acetone-d 6): δ = 55.7, 56.2, 89.8, 94.3, 100.0, 102.0, 102.5, 105.5, 105.6 (2 C), 107.0, 107.1 (2 C), 107.6, 119.8, 121.2, 122.9 (2 C), 123.4, 123.9, 126.8, 128.1, 141.4, 147.2, 159.0, 159.1, 159.5, 159.6 (2 C), 162.2. HRMS (ESI): m/z [M – H]+ calcd for C30H25O8: 513.15549; found: 513.15547.
  • 16 5-{6-Hydroxy-2-(4-hydroxy-2-methoxyphenyl)-5-[(E)-2-(3-hydroxy-5-methoxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl}benzene-1,3-diol (18) Yellowish amorphous powder; yield: 15 mg (45%). 1H NMR (500 MHz, acetone-d 6): δ = 3.76 (s, 3 H), 3.83 (s, 3 H), 4.36 (d, J = 5.0 Hz, 1 H), 5.67 (d, J = 5.0 Hz, 1 H), 6.20 (dd, J = 8.5, 2.0 Hz, 1 H), 6.26 (d, J = 2.0 Hz, 2 H), 6.34 (dd, J = 8.0, 2.0 Hz, 1 H), 6.36 (d, J = 2.0 Hz, 2 H), 6.41 (d, J = 2.0 Hz, 1 H), 6.51 (d, J = 2.0 Hz, 1 H), 6.68 (d, J = 2.0 Hz, 1 H), 6.76 (d, J = 16.5 Hz, 1 H), 7.05 (d, J = 8.0 Hz, 1 H), 7.15 (d, J = 16.5 Hz, 1 H), 7.16 (d, J = 8.0 Hz, 1 H). 13C NMR (125 MHz, acetone-d 6): δ = 55.6, 55.7, 55.8, 89.1, 99.7, 99.8, 103.9, 107.0, 107.3, 108.3, 118.6, 120.1, 122.3, 123.8, 125.3, 125.6, 127.2, 127.8, 128.1, 128.4, 137.2, 148.1, 151.9, 158.5 (2 C), 159.3 (2 C), 159.5, 162.8 (2 C). HRMS (ESI): m/z [M – H]+ calcd for C30H25O8: 513.15549; found: 513.15546.