Synlett 2020; 31(19): 1857-1861
DOI: 10.1055/s-0040-1707241
synpacts
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Catalytic Aromatic C–H Borylation

Hua Zhang
a   College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. of China
b   Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. of China   Email: huazhang@scuec.edu.cn
,
Li Wang
a   College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. of China
› Author Affiliations
This work was supported by the grants from the National Natural Science Foundation of China (21602096).
Further Information

Publication History

Received: 19 June 2020

Accepted after revision: 10 July 2020

Publication Date:
11 August 2020 (online)


Abstract

In recent decades, C–H borylation has undergone rapid development and has become one of the most important and efficient methods for the synthesis of organoboron compounds. Although transition-metal catalysis dominates C–H borylation, the metal-free approach has emerged as a promising alternative strategy. This article briefly summarizes the history of metal-free aromatic C–H borylation, including early reports on electrophilic C–H borylation and recent progress in metal-free catalytic intermolecular C–H borylation; it also highlights our recent work on BF3·Et2O-catalyzed C2–H borylation of hetarenes. Despite these recent advances, comprehensive mechanistic studies on various metal-free catalytic aromatic C–H borylations and novel processes with a wider substrate scope are eagerly expected in the near future.

 
  • References

    • 1a Hall D. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Wiley-VCH; Weinheim: 2011
    • 1b Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
    • 1c Santos Fernandes GF, Denny WA, Dos Santos JL. Eur. J. Med. Chem. 2019; 179: 791
    • 2a Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 2b Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 2c Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 2d Ros A, Fernández A, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
    • 2e Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
  • 3 Hurd DT. J. Am. Chem. Soc. 1948; 70: 2053
    • 4a Bujwid ZJ, Gerrard W, Lappert MF. Chem. Ind. (London) 1959; 1091
    • 4b ParcellParcellParcellMuetterties EL. J. Am. Chem. Soc. 1959; 81: 2597
    • 4c Muetterties EL. J. Am. Chem. Soc. 1960; 82: 4163
    • 4d Muetterties EL, Tebbe FN. Inorg. Chem. 1968; 7: 2663
    • 5a Kotz JC, Post EW. Inorg. Chem. 1970; 9: 1661
    • 5b Ruf W, Fueller M, Siebert W. J. Organomet. Chem. 1974; 64: C45
    • 5c Paetzold P, Hoffmann J. Chem. Ber. 1980; 113: 3724
    • 6a Tanaka S, Saito Y, Yamamoto T, Hattori T. Org. Lett. 2018; 20: 1828
    • 6b Oda S, Ueura K, Kawakami B, Hatakeyama T. Org. Lett. 2020; 22: 700
  • 7 Prokofjevs A, Kampf JW, Vedejs E. Angew. Chem. Int. Ed. 2011; 50: 2098
    • 8a Del Grosso A, Helm MD, Solomon SA, Caras-Quintero D, Ingleson MJ. Chem. Commun. 2011; 47: 12459
    • 8b Del Grosso A, Singleton PJ, Muryn CA, Ingleson MJ. Angew. Chem. Int. Ed. 2011; 50: 2102
    • 8c Solomon SA, Del Grosso A, Clark ER, Bagutski V, McDouall JJ. W, Ingleson MJ. Organometallics 2012; 31: 1908
    • 8d Bagutski V, Del Grosso A, Carrillo JA, Cade IA, Helm MD, Lawson JR, Singleton PJ, Solomon SA, Marcelli T, Ingleson MJ. J. Am. Chem. Soc. 2013; 135: 474
    • 8e Del Grosso A, Carrillo JA, Ingleson MJ. Chem. Commun. 2015; 51: 2878
    • 9a Kölle P, Nöth H. Chem. Rev. 1985; 85: 399
    • 9b Piers WE, Bourke SC, Conroy KD. Angew. Chem. Int. Ed. 2005; 44: 5016
    • 9c De Vries TS, Prokofjevs A, Vedejs E. Chem. Rev. 2012; 112: 4246
    • 9d Ingleson MJ. Top. Organomet. Chem. 2015; 49: 39
    • 10a Dewar MJ. S, Kubba VP, Pettit R. J. Chem. Soc. 1958; 3073
    • 10b Dewar MJ. S, Dietz R. J. Chem. Soc. 1959; 2728
    • 10c Dewar MJ. S, Dietz R. Tetrahedron Lett. 1959; 21
    • 10d Chissick SS, Dewar MJ. S, Maitlis PM. Tetrahedron Lett. 1960; 1: 8
    • 10e Dewar MJ. S, Kaneko C, Bhattacharjee MK. J. Am. Chem. Soc. 1962; 84: 4884
    • 10f Dewar MJ. S, Poesche WH. J. Org. Chem. 1964; 29: 1757
    • 10g Davis FA, Dewar MJ. S. J. Am. Chem. Soc. 1968; 90: 3511
    • 11a Köster R. Angew. Chem., Int. Ed. Engl. 1964; 3: 174
    • 11b Köster R, Benedikt G. Angew. Chem., Int. Ed. Engl. 1963; 2: 323

      For a review of intramolecular (directed) electrophilic C–H borylation, see:
    • 12a Iqbal SA, Pahl J, Yuan K, Ingleson MJ. Chem. Soc. Rev. 2020; 49: 4564

    • For examples of intramolecular (directed) electrophilic C–H borylation, see:
    • 12b Laaziri H, Bromm LO, Lhermitte F, Gschwind RM, Knochel P. J. Am. Chem. Soc. 1999; 121: 6940
    • 12c Zhou QJ, Worm K, Dolle RE. J. Org. Chem. 2004; 69: 5147
    • 12d De Vries TS, Prokofjevs A, Harvey JN, Vedejs E. J. Am. Chem. Soc. 2009; 131: 14679
    • 12e Ishida N, Moriya T, Goya T, Murakami M. J. Org. Chem. 2010; 75: 8709
    • 12f Niu L, Yang H, Wang R, Fu H. Org. Lett. 2012; 14: 2618
    • 12g Farrell JM, Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 5214
    • 12h Lv J, Chen X, Xue X.-S, Zhao B, Liang Y, Wang M, Jin L, Yuan Y, Han Y, Zhao Y, Lu Y, Zhao J, Sun W.-Y, Houk KN, Shi Z. Nature 2019; 575: 336
    • 12i Iqbal SA, Cid J, Procter RJ, Uzelac M, Yuan K, Ingleson MJ. Angew. Chem. Int. Ed. 2019; 58: 15381

      For examples of intramolecular (directed) electrophilic C–H borylation towards the synthesis of BN-fused and boron-doped polycyclic aromatics, see:
    • 13a Hatakeyama T, Hashimoto S, Seki S, Nakamura M. J. Am. Chem. Soc. 2011; 133: 18614
    • 13b Hirai H, Nakajima K, Nakatsuka S, Shiren K, Ni J, Nomura S, Ikuta T, Hatakeyama T. Angew. Chem. Int. Ed. 2015; 54: 13581
    • 13c Crossley DL, Cade IA, Clark ER, Escande A, Humphries MJ, King SM, Vitorica-Yrezabal I, Ingleson MJ, Turner ML. Chem. Sci. 2015; 6: 5144
    • 13d John A, Bolte M, Lerner H.-W, Wagner M. Angew. Chem. Int. Ed. 2017; 56: 5588
    • 13e Farrell JM, Schmidt D, Grande V, Würthner F. Angew. Chem. Int. Ed. 2017; 56: 11846
    • 13f Liang X, Yan Z.-P, Han H.-B, Wu Z.-G, Zheng Y.-X, Meng Y, Zuo J.-L, Huang W. Angew. Chem. Int. Ed. 2018; 57: 11316
    • 13g Yang D.-T, Nakamura T, He Z, Wang X, Wakamiya A, Peng T, Wang S. Org. Lett. 2018; 20: 6741
    • 13h Zhang J, Jung H, Kim D, Park S, Chang S. Angew. Chem. Int. Ed. 2019; 58: 7361
    • 13i Liu K, Lalancette RA, Jäkle F. J. Am. Chem. Soc. 2019; 141: 7453
    • 13j Yuan K, Kahan RJ, Si C, Williams A, Kirschner S, Uzelac M, Zysman-Colman E, Ingleson MJ. Chem. Sci. 2020; 11: 3258

      For examples of catalytic intramolecular electrophilic C–H borylation catalyzed by HNTf2 and [Ph3C]+[B(C6F5)4], see:
    • 15a Prokofjevs A, Vedejs E. J. Am. Chem. Soc. 2011; 133: 20056
    • 15b Prokofjevs A, Jermaks J, Borovika A, Kampf JW, Vedejs E. Organometallics 2013; 32: 6701
  • 16 Del Grosso A, Pritchard RG, Muryn CA, Ingleson MJ. Organometallics 2010; 29: 241 ; corrigendum: Organometallics 2021, 31, 2116
  • 17 Chernichenko K, Kótai B, Pápai I, Zhivonitko V, Nieger M, Leskelä M, Repo T. Angew. Chem. Int. Ed. 2015; 54: 1749
    • 18a Légaré M.-A, Courtemanche M.-A, Rochette É, Fontaine F.-G. Science 2015; 349: 513
    • 18b Bose SK, Marder TB. Science 2015; 349: 473
    • 18c Légaré M.-A, Rochette É, Lavergne JL, Bouchard N, Fontaine F.-G. Chem. Commun. 2016; 52: 5387
    • 18d Lavergne JL, Jayaraman J, Misal Castro LC, Rochette É, Fontaine F.-G. J. Am. Chem. Soc. 2017; 139: 14714
    • 18e Jayaraman A, Misal Castro LC, Fontaine F.-G. Org. Process Res. Dev. 2018; 22: 1489
    • 18f Bouchard N, Fontaine F.-G. Dalton Trans. 2019; 48: 4846
    • 18g Rochette É, Desrosiers V, Soltani Y, Fontaine F.-G. J. Am. Chem. Soc. 2019; 141: 12305
  • 19 Chernichenko K, Lindqvist M, Kótai B, Nieger M, Sorochkina K, Pápai I, Repo T. J. Am. Chem. Soc. 2016; 138: 4860
  • 20 Stahl T, Müther K, Ohki Y, Tatsumi K, Oestreich M. J. Am. Chem. Soc. 2013; 135: 10978
  • 21 Yin Q, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 3712
  • 22 Kitani F, Takita R, Imahori T, Uchiyama M. Heterocycles 2017; 95: 158
  • 23 Zhang S, Han Y, He J, Zhang Y. J. Org. Chem. 2018; 83: 1377
  • 24 Liu Y.-L, Kehr G, Daniliuc CG, Erker G. Chem. Eur. J. 2017; 23: 12141
  • 25 McGough JS, Cid J, Ingleson MJ. Chem. Eur. J. 2017; 23: 8180
    • 26a Zhang H, Hagihara S, Itami K. Chem. Eur. J. 2015; 21: 16796
    • 26b Zhang H, Hagihara S, Itami K. Chem. Lett. 2015; 44: 779
    • 27a Ishiyama T, Miyaura N. Chem. Rec. 2004; 3: 271
    • 27b Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
  • 28 Zhong Q, Qin S, Yin Y, Hu J, Zhang H. Angew. Chem. Int. Ed. 2018; 57: 14891
  • 29 Repo and co-workers recently reported an electrophilic C3-selective C–H borylation of N-hetarenes with BF3·SMe2 assisted by sterically hindered amines and catalytic amounts of thioureas; see: Iashin V, Berta D, Chernichenko K, Nieger M, Moslova K, Pápai I, Repo T. Chem. Eur. J. 2020; in press; DOI: 10.1002/chem.202001436.