Synthesis 2020; 52(23): 3675-3683
DOI: 10.1055/s-0040-1707236
paper
© Georg Thieme Verlag Stuttgart · New York

Large-Scale Synthesis of 2-Chlorotetrahydroquinoline and 2-Chlorotetrahydroquinolin-8-one

Zhijian Zong
,
Ke Wu
,
Liqun Jin
The College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China, Email: liqunjin@zjut.edu.cn   Email: Xinquan@zjut.edu.cn
,
Nan Sun
,
Baoxiang Hu
,
,
Xinquan Hu
The College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China, Email: liqunjin@zjut.edu.cn   Email: Xinquan@zjut.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundations of China (21972125, 21773210, and 21776260) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-B2019005).
Further Information

Publication History

Received: 09 June 2020

Accepted after revision: 13 July 2020

Publication Date:
27 August 2020 (online)


Abstract

An efficient large-scale preparation of 2-chlorotetrahydroquinoline with cyclohexanone and benzylamine as starting materials was developed and well optimized, in which benzyl-protected enamide was successfully cyclized and benzyl group was directly removed under Vilsmeier conditions. Azeotropic distillation provided 264 g of 2-chlorotetrahydroquinoline (79%) on a 2 mol scale of reaction without intermediate isolation. The downstream product 2-chlorotetrahydroquinolin-8-one was acquired through Boekelheide rearrangement, hydrolysis of acetate via NaBH4 reduction, and Anelli oxidation. With the developed procedure, the intermediates were not necessary to be isolated and 2-chlorotetrahydroquinolin-8-one was conveniently obtained with solvent slurry in 65% overall isolated yield in a four-step sequence.

Supporting Information

 
  • References

    • 1a Glase SA, Corbin AE, Pugsley TA, Heffner TG, Wise LD. J. Med. Chem. 1995; 38: 3132
    • 1b Enhsen A, Karabelas K, Heerding JM, Moore HW. J. Org. Chem. 1990; 55: 1177
    • 1c Bosch J, Roca T, Pérez CG, Montanari S. Bioorg. Med. Chem. Lett. 2000; 10: 563
    • 1d Sucheck SJ, Greenberg WA, Tolbert TJ, Wong C.-H. Angew. Chem. Int. Ed. 2000; 39: 1080
    • 1e Zimmerman SC, Zeng Z. J. Org. Chem. 1990; 55: 4789
    • 1f Zimmerman SC, Zeng Z, Wu W, Reichert DE. J. Am. Chem. Soc. 1991; 113: 183
  • 2 Yoshizumi T, Takahashi H, Miyazoe H, Sugimoto Y, Tsujita T, Kato T, Ito H, Kawamoto H, Hirayama M, Ichikawa D, Azuma-Kanoh T, Ozaki S, Shibata Y, Tani T, Chiba M, Ishii Y, Okuda S, Tadano K, Fukuroda T, Okamoto O, Ohta H. J. Med. Chem. 2008; 51: 4021
  • 3 Högenauer K, Baumann K, Enz A, Mulzer J. Bioorg. Med. Chem. Lett. 2001; 11: 2627
    • 4a Rudolf L, Manfred W, Walter D, Jirgen B, Karl S. PCT Int. Appl. US 5071979, 1982
    • 4b Brown RF, Kinnick MD, Morin JM, Vasileff RT, Counter FT, Davidson EO, Ensminger PW, Eudaly JA, Kasher JS. J. Med. Chem. 1990; 33: 2114
  • 5 Crawford JB, Chen G, Gauthier D, Wilson T, Carpenter B, Baird IR, McEachern E, Kaller A, Harwig C, Atsma B, Skerlj RT, Bridger GJ. Org. Process Res. Dev. 2008; 12: 823
  • 6 Zimmerman SC, Wu W. J. Am. Chem. Soc. 1989; 111: 8054
    • 7a Suo H, Solan GA, Ma Y, Sun W.-H. Coord. Chem. Rev. 2018; 372: 101
    • 7b Bariashir C, Huang C, Solan GA, Sun W.-H. Coord. Chem. Rev. 2019; 385: 208
    • 7c Woodmansee DH, Müller M.-A, Neuburger M, Pfaltz A. Chem. Sci. 2010; 1: 72
    • 8a Xie Y, Huang H, Mo W, Fan X, Shen Z, Shen Z, Sun N, Hu B, Hu X. Tetrahedron: Asymmetry 2009; 20: 1425
    • 8b Tang Y, Zeng Y, Hu Q, Huang F, Jin L, Mo W, Sun N, Hu B, Shen Z, Hu X, Sun W.-H. Adv. Synth. Catal. 2016; 358: 2642
    • 8c Lai Y, Zong Z, Tang Y, Mo W, Sun N, Hu B, Shen Z, Jin L, Sun W.-h, Hu X. Beilstein J. Org. Chem. 2017; 13: 213
    • 8d Jin L, Qian J, Sun N, Hu B, Shen Z, Hu X. Chem. Commun. 2018; 54: 5752
    • 8e Wu K, Sun N, Hu B, Shen Z, Jin L, Hu X. Adv. Synth. Catal. 2018; 360: 3038
    • 8f Jin L, Wei W, Sun N, Hu B, Shen Z, Hu X. Org. Chem. Front. 2018; 5: 2484
    • 8g Zong Z, Yu Q, Sun N, Hu B, Shen Z, Hu X, Jin L. Org. Lett. 2019; 21: 5767
    • 9a Yu J, Hu X, Zeng Y, Zhang L, Ni C, Hao X, Sun W.-H. New J. Chem. 2011; 35: 178
    • 9b Chai W, Yu J, Wang L, Hu X, Redshaw C, Sun W.-H. Inorg. Chim. Acta 2012; 385: 21
    • 9c Sun W.-H, Kong S, Chai W, Shiono T, Redshaw C, Hu X, Guo C, Hao X. Appl. Catal., A. 2012; 447-448: 67
    • 9d Zhang W, Chai W, Sun W.-H, Hu X, Redshaw C, Hao X. Organometallics 2012; 31: 5039
    • 9e Ye B, Wang L, Hu X, Redshaw C, Sun W.-H. Inorg. Chim. Acta 2013; 407: 281
    • 9f Huang F, Xing Q, Liang T, Flisak Z, Ye B, Hu X, Yang W, Sun W.-H. Dalton Trans. 2014; 43: 16818
    • 9g Ba J, Du S, Yue E, Hu X, Flisak Z, Sun W.-H. RSC Adv. 2015; 5: 32720
    • 9h Huang F, Sun Z, Du S, Yue E, Ba J, Hu X, Liang T, Galland GB, Sun W.-H. Dalton Trans. 2015; 44: 14281
    • 9i Huang C, Zhang Y, Liang T, Zhao Z, Hu X, Sun W.-H. New J. Chem. 2016; 40: 9329
    • 9j Huang F, Zhang W, Sun Y, Hu X, Solan GA, Sun W.-H. New J. Chem. 2016; 40: 8012
    • 9k Huang F, Zhang W, Yue E, Liang T, Hu X, Sun W.-H. Dalton Trans. 2016; 45: 657
    • 9l Zhang Y, Huang C, Hao X, Hu X, Sun W.-H. RSC Adv. 2016; 6: 91401
    • 9m Nurdin L, Spasyuk DM, Piers WE, Maron L. Inorg. Chem. 2017; 56: 4157
    • 9n Suo H, Zhang Y, Ma Z, Yang W, Flisak Z, Hao X, Hu X, Sun W.-H. Catal. Commun. 2017; 102: 26
    • 9o Wang Z, Zhang Y, Ma Y, Hu X, Solan GA, Sun Y, Sun W.-H. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 3494
    • 9p Zhang Y, Suo H, Huang F, Liang T, Hu X, Sun W.-H. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 830
    • 9q Huang C, Huang Y, Ma Y, Solan GA, Sun Y, Hu X, Sun W.-H. Dalton Trans. 2018; 47: 13487
    • 9r Huang Y, Zhang R, Liang T, Hu X, Solan GA, Sun W.-H. Organometallics 2019; 38: 1143
    • 9s Zhang R, Huang Y, Solan GA, Zhang W, Hu X, Hao X, Sun W.-H. Dalton Trans. 2019; 48: 8175
  • 10 Pan B, Liu B, Yue E, Liu Q, Yang X, Wang Z, Sun W.-H. ACS Catal. 2016; 6: 1247
  • 11 Liu S, Zhang J, Zuo W, Zhang W, Sun W.-H, Ye H, Li Z. Polymers 2017; 9: 83
  • 12 Skupinska KA, McEachern EJ, Skerlj RT, Bridger GJ. J. Org. Chem. 2002; 67: 7890
    • 13a Koltunov KYu, Surya Prakash GK, Rasul G, Olah GA. Heterocycles 2004; 62: 757
    • 13b Xie L.-Y, Duan Y, Lu L.-H, Li Y.-J, Peng S, Wu C, Liu K.-J, Wang Z, He W.-M. ACS Sustain. Chem. Eng. 2017; 5: 10407
  • 14 Meyers AI, Garcia-Munoz G. J. Org. Chem. 1964; 29: 1435
  • 15 Meth-Cohn O, Westwood KT. J. Chem. Soc., Perkin Trans. 1 1984; 1173
    • 16a Yamamoto I. In Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor . Yamamoto I, Casida JE. Springer; Tokyo: 1999: 3
    • 16b Flores-Céspedes F, Figueredo-Flores CI, Daza-Fernández I, Vidal-Peña F, Villafranca-Sánchez M, Fernández-Pérez M. J. Agric. Food Chem. 2012; 60: 1042
    • 16c Belov V, Käfferlein HU. J. Labelled Compd. Radiopharm. 2019; 62: 126
  • 17 Brunet J.-L, Badiou A, Belzunces LP. Pest Manag. Sci. 2005; 61: 742
  • 18 Gangadasu B, Narender P, Bharath Kumar S, Ravinder M, Ananda Rao B, Ramesh C, China Raju B, Jayathirtha Rao V. Tetrahedron 2006; 62: 8398
  • 19 Kürti L, Czakó B. In Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier Academic Press; Amsterdam: 2005: 468
  • 20 Chen CY. In The Art of Process Chemistry . Yasuda N. Wiley; New York: 2010: 117
  • 21 Cotarca L, Geller T, Répási J. Org. Process Res. Dev. 2017; 21: 1439
    • 22a Boekelheide V, Linn WJ. J. Am. Chem. Soc. 1954; 76: 1286
    • 22b Oae S, Tamagaki S, Negoro T, Kozuka S. Tetrahedron 1970; 26: 4051
    • 23a Hu X.-Q, Wang J.-W, Zhou N, Zhao C.-X. Fenzi Cuihua 2001; 15: 481
    • 23b Wang J, Zhou N, Zhao C, Cao G, Hu X. Cuihua Xuebao 2001; 22: 87
    • 24a McKillop A, Bhagrath AM. Heterocycles 1985; 23: 1697
    • 24b Konno K, Hashimoto K, Shirahama H, Matsumoto M. Heterocycles 1986; 24: 2169
    • 24c Fontenas C, Bejan E, Haddou HA, Balavoine GG. A. Synth. Commun. 1995; 25: 629
    • 25a Akita H, Takano Y, Nedu K, Kato K. Tetrahedron: Asymmetry 2006; 17: 1705
    • 25b Santaniello E, Ferraboschi P, Sozzani P. J. Org. Chem. 1981; 46: 4584
    • 25c Kim J, De Castro KA, Lim M, Rhee H. Tetrahedron 2010; 66: 3995