Synthesis 2021; 53(01): 175-181
DOI: 10.1055/s-0040-1707230
paper
© Georg Thieme Verlag Stuttgart · New York

Simple Synthesis of Dimethyl Nitrobenzhydrylphosphonates and Heteroarylnitroarylacetonitriles via Vicarious Nucleophilic Substitution (VNS) Reaction

Mieczysław Mąkosza
Institute of Organic Chemistry Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland   Email: [email protected]
,
Małgorzata Bechcicka
,
Krzysztof Wojciechowski
› Author Affiliations
Further Information

Publication History

Received: 28 May 2020

Accepted after revision: 30 June 2020

Publication Date:
25 August 2020 (online)


Abstract

Acetals of dimethyl phenyl- and heteroaryl-α-hydroxymethanephosphonates were deprotonated to generate carbanions, which enter the vicarious nucleophilic substitution (VNS) of hydrogen in aromatic nitro compounds to form 4-nitrobenzhydrylphosphonates and α-heteroaryl-4-nitrobenzylphosphonates. Similarly acetals of cyano­hydrins of heteroaromatic aldehydes (furfural and 2-formylthiophene) react to form heteroaryl 4-nitroarylacetonitriles. The anion of the hemiacetal of acetaldehyde is an efficient leaving group in the base-induced β-elimination step – the crucial step in the VNS reaction. The reaction selectively occurred at the para-position to the nitro group.

Supporting Information

 
  • References

    • 1a Goliński J, Mąkosza M. Tetrahedron Lett. 1978; 3495
    • 1b Mąkosza M, Winiarski J. Acc. Chem. Res. 1987; 20: 282
    • 1c Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
    • 1d Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
    • 1e Mąkosza M. Synthesis 2017; 49: 3247
    • 1f Loska R., Mąkosza M.; Synthesis 2020, 52: in press; DOI: 10.1055/s-0040-1707149.
  • 2 Mąkosza M, Goliński J. Angew. Chem. Int. Ed. 1982; 21: 451
    • 3a Mąkosza M, Goliński J, Baran J. J. Org. Chem. 1984; 49: 1488
    • 3b Brześkiewicz J, Loska R, Mąkosza M. J. Org. Chem. 2018; 83: 8499
    • 4a Mąkosza M, Winiarski J. Chem. Lett. 1984; 13: 1623
    • 4b Mąkosza M, Danikiewicz W, Wojciechowski K. Liebigs Ann. Chem. 1988; 203
  • 5 Mąkosza M, Winiarski J. J. Org. Chem. 1984; 49: 1494
    • 6a Engel R. Chem. Rev. 1977; 77: 349
    • 6b Moonen K, Laureyn I, Stevens CV. Chem. Rev. 2004; 104: 6177
  • 7 Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
  • 8 Pallikonda G, Chakravarty M. Eur. J. Org. Chem. 2013; 944
  • 9 Montel S, Raffier L, He YY, Walsh PJ. Org. Lett. 2014; 16: 1446
    • 10a Lawrence NJ, Liddle J, Jackson DA. Tetrahedron Lett. 1995; 36: 8477
    • 10b Harger MJ. P. J. Chem. Soc., Perkin Trans. 2 2001; 41
    • 11a Mąkosza M, Sulikowski D. Synlett 2010; 1666
    • 11b Mąkosza M, Sulikowski D. J. Org. Chem. 2009; 74: 3827
  • 12 Prasad SS, Singh DK, Kim I. J. Org. Chem. 2019; 84: 6323
    • 13a Sisido K, Nozaki H, Nozaki M, Okano K. J. Org. Chem. 1954; 19: 1699
    • 13b Sumi T, Goseki R, Otsuka H. Chem. Commun. 2017; 53: 11885
    • 14a Chen G, Wang Z, Wu J, Ding KL. Org. Lett. 2008; 10: 4573
    • 14b Theerthagiri P, Lalitha A. Tetrahedron Lett. 2012; 53: 5535
  • 15 Nambo M, Yar M, Smith JD, Crudden CM. Org. Lett. 2015; 17: 50
  • 16 Mąkosza M, Jagusztyn-Grochowska M, Ludwikow M, Jawdosiuk M. Tetrahedron 1974; 30: 3723
    • 17a Hermann CK. F, Sachdeva YP, Wolfe JF. J. Heterocycl. Chem. 1987; 24: 1061
    • 17b Cherng Y.-J. Tetrahedron 2002; 58: 4931
  • 18 Yin Z, Zhang Z, Kadow JF, Meanwell NA, Wang T. J. Org. Chem. 2004; 69: 1364
  • 19 Temelli B, Unaleroglu C. Synthesis 2014; 46: 1407
  • 20 Rad N, Mąkosza M. Eur. J. Org. Chem. 2018; 376
  • 21 Kozlowski JK, Rath NP, Spilling CD. Tetrahedron 1995; 51: 6385
  • 22 Mąkosza M, Goetzen T. Org. Prep. Proced. Int. 1973; 5: 203
  • 23 Singh DK, Prasad SS, Kim J, Kim I. Org. Chem. Front. 2019; 6: 669