Synthesis 2020; 52(20): 3058-3064
DOI: 10.1055/s-0040-1707204
© Georg Thieme Verlag Stuttgart · New York

Iodine- and TBHP-Promoted Acylation of Benzothiazoles under Metal-Free Conditions

Bin Wang
Qianwei Zhang
Zhongqi Guo
College of Chemistry, Xinjiang University, Urumqi 830046, P. R. of China   Email:   Email:
› Author Affiliations
This work was supported by the National Science Foundation of China (Grant Nos. 21961038 and 21462041).
Further Information

Publication History

Received: 14 June 2020

Accepted after revision: 16 June 2020

Publication Date:
23 July 2020 (online)


A simple protocol for the synthesis of 2-acylbenzothiazoles using aryl ketones and benzothiazoles in the presence of I2 and TBHP is described. Acylation of the benzothiazoles is achieved through a sequence involving oxidation of the aryl ketone to an aryl glyoxal, ring-opening of the benzothiazole followed by condensation of the amino group with the aryl glyoxal, cyclization and oxidation. The method avoids the use of metals and toxic solvents. In addition, this protocol has the advantage of broad scope and provides good to excellent product yields.

Supporting Information

Primary Data

  • References

  • 1 Le Bozec L, Moody CJ. Aust. J. Chem. 2009; 62: 639
  • 2 Myllymäki MJ, Saario SM, Kataja AO, Castillo-Melendez JA, Nevalainen T, Juvonen RO, Järvinen T, Koskinen AM. J. Med. Chem. 2007; 50: 4236
  • 3 Komiya M, Asano S, Koike N, Koga E, Igarashi J, Nakatani S, Isobe Y. Chem. Pharm. Bull. 2013; 61: 1094
  • 4 Serdons K, Terwinghe C, Vermaelen P, Van Laere K, Kung H, Mortelmans L, Bormans G, Verbruggen A. J. Med. Chem. 2009; 52: 1428
  • 5 Skinner W, Gualtiere F, Brody G, Fieldsteel A. J. Med. Chem. 1971; 14: 546
  • 6 Cravatt BF, Giangi DK, Mayfieldt SP, Boger DL, Lerner RA, Gilulat NB. Nature 1996; 384: 83
  • 7 de Moraes Gomes PA. T, de Oliveira Barbosa M, Santiago EF, de Oliveira Cardoso MV, Costa NT. C, Hernandes MZ, Moreira DR. M, da Silva AC, dos Santos TA. R, Pereira VR. A. Eur. J. Med. Chem. 2016; 121: 387
  • 8 Xue W.-J, Guo Y.-Q, Gao F.-F, Li H.-Z, Wu A.-X. Org. Lett. 2013; 15: 890
  • 9 Gao Q, Wu X, Jia F, Liu M, Zhu Y, Cai Q, Wu A. J. Org. Chem. 2013; 78: 2792
  • 10 Song Q, Feng Q, Zhou M. Org. Lett. 2013; 15: 5990
  • 11 Wang J, Zhang X.-Z, Chen S.-Y, Yu X.-Q. Tetrahedron 2014; 70: 245
  • 12 Li G, Jiang J, Zhang F, Xiao F, Deng G.-J. Org. Biomol. Chem. 2017; 15: 10024
  • 13 Meng X, Bi X, Yu C, Chen G, Chen B, Jing Z, Zhao P. Green Chem. 2018; 20: 4638
    • 14a Yang K, Zhang C, Wang P, Zhang Y, Ge H. Chem. Eur. J. 2014; 20: 7241
    • 14b Yang K, Chen X, Wang Y, Li W, Kadi AA, Fun H.-K, Sun H, Zhang Y, Li G, Lu H. J. Org. Chem. 2015; 80: 11065
    • 15a Zhu Y.-P, Lian M, Jia F.-C, Liu M.-C, Yuan J.-J, Gao Q.-H, Wu A.-X. Chem. Commun. 2012; 48: 9086
    • 15b Yang Y, Gao M, Zhang D.-X, Wu L.-M, Shu W.-M, Wu A.-X. Tetrahedron 2012; 68: 7338
    • 15c Gao M, Yang Y, Wu Y.-D, Deng C, Shu W.-M, Zhang D.-X, Cao L.-P, She N.-F, Wu A.-X. Org. Lett. 2010; 12: 4026
    • 16a Yan Y, Zhang Y, Zha Z, Wang Z. Org. Lett. 2013; 15: 2274
    • 16b Yan Y, Zhang Y, Feng C, Zha Z, Wang Z. Angew. Chem. Int. Ed. 2012; 51: 1
    • 16c Kim HJ, Kim J, Cho SH, Chang S. J. Am. Chem. Soc. 2011; 133: 16382
  • 17 Floyd MB, Du MT, Fabio PF, Jacob LA, Johnson BD. J. Org. Chem. 1985; 50: 5022
    • 18a Monga A, Bagchi S, Sharma A. New J. Chem. 2018; 42: 1551
    • 18b Wang H.-X, Wei T.-Q, Xu P, Wang S.-Y, Ji S.-J. J. Org. Chem. 2018; 83: 13491
    • 18c Ilangovan A, Satish G. J. Org. Chem. 2014; 79: 4984