Synlett 2020; 31(18): 1741-1746
DOI: 10.1055/s-0040-1707190
synpacts
© Georg Thieme Verlag Stuttgart · New York

Synergistic Catalysis for Stereodivergent Synthesis of trans- and cis-Skipped Dienes

Fang Wang
,
Shenqqing Zhu
,
Lingling Chu
We thank the National Natural Science Foundation of China (21971036, 21901036, 21702029), the Shanghai Sailing Program (19YF1400300), and the Fundamental Research Funds for the Central Universities for financial support.
Further Information

Publication History

Received: 02 June 2020

Accepted after revision: 12 June 2020

Publication Date:
14 July 2020 (online)


Abstract

Catalytic, stereoselective synthesis of skipped dienes is an important topic in organic synthesis. Summarized here are the transition-metal-catalyzed stereoselective approaches and a new, photoinduced stereodivergent strategy reported by our group recently. Our strategy utilizes a synergistic photoredox/nickel protocol to enable the cross-electrophile coupling of allylic carbonates and vinyl triflates to construct 1,4-dienes, the stereoselectivity of which was tuned by the triplet energy (E T) photocatalysts employed, offering a convenient and stereodivergent solution to (E)- and (Z)-1,4-dienes from one set of substrates.

 
  • References

    • 1a Crews P, Kakou Y, Quinoa E. J. Am. Chem. Soc. 1988; 110: 4365
    • 1b Kong F, Andersen RJ, Allen TM. J. Am. Chem. Soc. 1994; 116: 6007
    • 1c Hosokawa S, Yokota K, Imamura K, Suzuki Y, Kawarasaki M, Tatsuta K. Tetrahedron Lett. 2006; 47: 5415
    • 1d Pospíšil J, Markó IE. J. Am. Chem. Soc. 2007; 129: 3516
    • 1e Surup F, Shojaei H, von Zezschwitz P, Kunze B, Grond S. Bioorg. Med. Chem. 2008; 16: 1738
    • 2a Durand S, Parrain J.-L, Santelli M. J. Chem. Soc., Perkin Trans. 1 2000; 253
    • 2b Fürstner A, Larionov O, Flügge S. Angew. Chem. Int. Ed. 2007; 46: 5545
    • 2c Aïssa C. Eur. J. Org. Chem. 2009; 1831
    • 3a Trost BM, Probst GD, Schoop A. J. Am. Chem. Soc. 1998; 120: 9228
    • 3b Trost BM, Pinkerton AB, Toste FD, Sperrle M. J. Am. Chem. Soc. 2001; 123: 12504
  • 4 Hilt G, Treutwein J. Angew. Chem. Int. Ed. 2007; 46: 8500
  • 5 Arndt M, Dindaroğlu M, Schmalz H.-G, Hilt G. Org. Lett. 2011; 13: 6236
    • 6a Alderson T, Jenner EL, Lindsey RV. J. Am. Chem. Soc. 1965; 87: 5638
    • 6b Su AC. L. Catalytic Codimerization of Ethylene and Butadiene . In Advances in Organometallic Chemistry, Vol. 17. Stone FG. A, West R. Academic Press; New York: 1979: 269-318
    • 7a Sharma RK, RajanBabu TV. J. Am. Chem. Soc. 2010; 132: 3295
    • 7b Page JP, RajanBabu TV. J. Am. Chem. Soc. 2012; 134: 6556
    • 7c Schmidt VA, Kennedy CR, Bezdek MJ, Chirik PJ. J. Am. Chem. Soc. 2018; 140: 3443
  • 8 Hilt G, du Mesnil F.-X, Lüers S. Angew. Chem. Int. Ed. 2001; 40: 387
  • 9 Moreau B, Wu JY, Ritter T. Org. Lett. 2009; 11: 337
  • 10 Jing SM, Balasanthiran V, Pagar V, Gallucci JC, RajanBabu TV. J. Am. Chem. Soc. 2017; 139: 18034
  • 11 Kolundzic F, Micalizio GC. J. Am. Chem. Soc. 2007; 129: 15112
  • 12 Macklin TK, Micalizio GC. Nat. Chem. 2010; 2: 638
  • 13 Mailig M, Hazra A, Armstrong MK, Lalic G. J. Am. Chem. Soc. 2017; 139: 6969
  • 14 Kabalka GW, Al-Masum M. Org. Lett. 2006; 8: 11
  • 15 Sarkar SM, Uozumi Y, Yamada YM. A. Angew. Chem. Int. Ed. 2011; 50: 9437
    • 16a Akiyama K, Gao F, Hoveyda AH. Angew. Chem. Int. Ed. 2010; 49: 419
    • 16b Gao F, McGrath KP, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 14315
    • 16c Lee Y, Akiyama K, Gillingham DG, Brown MK, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 446
  • 17 Hamilton JY, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2013; 135: 994
  • 18 Huang L, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 10333
  • 19 McGeough CP, Strom AE, Jamison TF. Org. Lett. 2019; 21: 3606
  • 20 Song F, Wang F, Guo L, Feng X, Zhang Y, Chu L. Angew. Chem. Int. Ed. 2020; 59: 177
    • 21a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
    • 21b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
    • 21c Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 21d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 22a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 22b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 22c Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
    • 22d Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 23a Zhang P, Le CC, MacMillan DW. J. Am. Chem. Soc. 2016; 138: 8084
    • 23b Duan Z, Li W, Lei A. Org. Lett. 2016; 18: 4012
    • 23c Smith RT, Zhang X, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
    • 23d Peng L, Li Z, Yin G. Org. Lett. 2018; 20: 1880
    • 23e Yu W, Chen L, Tao J, Wang T, Fu J. Chem. Commun. 2019; 55: 5918
    • 23f Dewanji A, Bülow RF, Rueping M. Org. Lett. 2020; 22: 1611
    • 23g Kerackian T, Reina A, Bouyssi D, Monteiro N, Amgoune A. Org. Lett. 2020; 22: 2240
    • 23h Steiman TJ, Liu J, Mengiste A, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7598
    • 23i Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. ACS Catal. 2020; 10: 5821
    • 24a Singh K, Staig SJ, Weaver JD. J. Am. Chem. Soc. 2014; 136: 5275
    • 24b Metternich JB, Gilmour R. J. Am. Chem. Soc. 2015; 137: 11254
    • 24c Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
    • 24d Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
    • 24e Faßbender SI, Metternich JB, Gilmour R. Org. Lett. 2018; 20: 724
    • 24f Molloy JJ, Morack T, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 13654
  • 25 Guo L, Song F, Zhu S, Li H, Chu L. Nat. Commun. 2018; 9: 4543