Synlett 2020; 31(16): 1537-1542
DOI: 10.1055/s-0040-1707165
synpacts
© Georg Thieme Verlag Stuttgart · New York

Peptide Cyclization at High Concentration

Rachel D. Wills
,
Victor T. Adebomi
,
Monika Raj
Department of Chemistry and Biochemistry, Auburn University Auburn, AL 36830, USA   Email: mzr0068@auburn.edu
› Author Affiliations
This research was supported by the National Science Foundation (Grant No. CHE-1752654) granted to M.R.
Further Information

Publication History

Received: 11 May 2020

Accepted after revision: 21 May 2020

Publication Date:
08 July 2020 (online)


Abstract

The emergence of cyclic peptides as pharmaceuticals has led to an eruption of new methodologies for macrocyclization. However, the cyclization of peptides at high concentrations presents a challenge due to the production of side products like dimers and oligomers. This factor is more pronounced with the cyclization of peptides composed of fewer than seven amino acids, thus has created a need for a new synthetic strategy. Herein, we will elucidate a new chemoselective method termed ‘CyClick’ that works in an exclusively intramolecular fashion preventing the formation of commonly occurring side products such as dimers and oligomers, even at relatively high concentration.

1 Introduction

2 Known Methodologies

3 Novel CyClick Chemistry

4 Conclusion and Outlook

 
  • References

    • 1a Gongora-Benitez M, Tulla-Puche J, Albericio F. Chem. Rev. 2014; 114: 901
    • 1b Hill TA, Shepherd NE, Diness F, Fairlie DP. Angew. Chem. Int. Ed. 2014; 53: 13020
    • 1c Yudin AK. Chem. Sci. 2015; 6: 30
    • 1d Leenheer D, Dijke PT, Hipolito CJ. Pept. Sci. 2016; 106: 889
    • 1e Zaretsky S, Yudin AK. In Peptide-Based Drug Discovery: Challenges and New Therapeutics . Srivastava V. The Royal Society of Chemistry; London: 2017. Chap. 5, 141-171
    • 1f Zorzi A, Deyle K, Heinis C. Curr. Opin. Chem. Biol. 2017; 38: 24
    • 3a Cardote TA. F, Ciulli A. ChemMedChem 2016; 11: 787
    • 3b Ermert P, Moehle K, Obrecht D. In Macrocycles in Drug Discovery . Levin J. Royal Society of Chemistry; London: 2015. Chap. 8, 283-338
  • 4 Sieber SA, Marahiel MA. J. Bacteriol. 2003; 185: 7036
  • 5 White CJ, Yudin AK. Nat. Chem. 2011; 3: 509
  • 6 Davies JS. J. Pept. Sci. 2003; 9: 471
  • 7 McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DW. C. Angew. Chem. Int. Ed. 2017; 56: 718
    • 8a Thakkar A, Trinh TB, Pei D. ACS Comb. Sci. 2013; 15: 120
    • 8b Lambert JN, Mitchell JP, Roberts KD. J. Chem. Soc., Perkin Trans. 1 2001; 471
    • 8c Li P, Roller PP, Xu J. Curr. Org. Chem. 2002; 6: 411
    • 8d Davies JS. J. Pept. Sci. 2003; 9: 471
    • 8e Hamada Y, Shioiri T. Chem. Rev. 2005; 105: 4441
    • 8f Tan N.-H, Zhou J. Chem. Rev. 2006; 106: 840
    • 8g Spatola AF, Romanovskis P. In The Amide Linkage: Structural Aspects in Chemistry, Biochemistry, and Materials Science: Greenberg A., Breneman C. M., Liebman J. F. John Wiley and Sons, Inc; Hoboken: 2003. Chap. 16, 519-564
    • 8h Jiang S, Li Z, Ding K, Roller PP. Curr. Org. Chem. 2008; 12: 1502
    • 8i De Leon Rodriguez LM, Weidkamp AJ, Brimble MA. Org. Biomol. Chem. 2015; 13: 6906
    • 8j Ong YS, Gao L, Kalesh KA, Yu Z, Wang J, Liu C, Li Y, Sun H, Lee SS. Curr. Top. Med. Chem. 2017; 17: 2302
  • 9 Puentes AR, Morejon MC, Rivera DG, Wessjohann LA. Org. Lett. 2017; 19: 4022
  • 10 Matsuda K, Kuranaga T, Wakimoto T. J. Synth. Org. Chem., Japan 2019; 77: 1106
  • 11 Jolliffe KA. Aust. J. Chem. 2018; 71: 723
  • 12 Dumy P, Keller M, Ryan DE, Rohwedder B, Wohr T, Mutter M. J. Am. Chem. Soc. 1997; 119: 918
    • 13a Kopple KD. J. Pharm. Sci. 1972; 61: 1345
    • 13b Titlestad K. Acta Chem. Scand., Ser. B 1977; 31: 641
    • 13c Ehrlich A, Heyne H.-U, Winter R, Beyermann M, Haber H, Carpino LA, Bienert M. J. Org. Chem. 1996; 61: 8831
    • 13d Ghosh D, Lahiri P, Verma H, Mukherjee S, Chatterjee J. Chem. Sci. 2016; 7: 5212
  • 14 Hutchinson EG, Thornton JM. Protein Sci. 1994; 3: 2207
  • 15 Fairweather KA, Sayyadi N, Luck IJ, Clegg JK, Jolliffe KA. Org. Lett. 2010; 12: 3136
  • 16 Wong MS. Y, Jolliffe KA. Aust. J. Chem. 2010; 63: 797
  • 17 Roesner S, Saunders GJ, Wilkening I, Jayawant E, Geden JV, Kerby P, Dixon AM, Notman R, Shipman M. Chem. Sci. 2019; 10: 2465
  • 18 Le DN, Riedel J, Kozlyuk N, Martin RW, Dong VM. Org. Lett. 2017; 19: 114
  • 19 Ahmed MI, Haper JB, Hunter L. Org. Biomol. Chem. 2014; 12: 4598
  • 20 Hill R, Rai V, Yudin AK. J. Am. Chem. Soc. 2010; 132: 2889
  • 21 Lam HY, Zhang Y, Liu H, Xu J, Wong CT. T, Xi C, Li X. J. Am. Chem. Soc. 2013; 135: 6272
  • 22 Wong CT. T, Lam HY, Song T, Chen G, Li X. Angew. Chem. Int. Ed. 2013; 52: 10212
  • 23 Sengupta S, Mehta G. Org. Biomol. Chem. 2020; 18: 1851
  • 24 Li B, Li X, Han B, Chen Z, Zhang X, He G, Chen G. J. Am. Chem. Soc. 2019; 141: 9401
  • 25 Zhang X, Lu G, Sun M, Mahankali M, Ma Y, Zhang M, Hua W, Hu Y, Wang Q, Chen J, He G, Qi A, Shen W, Liu P, Chen G. Nat. Chem. 2018; 10: 540
  • 26 Tang J, He Y, Chen H, Sheng W, Wang H. Chem. Sci. 2017; 8: 4565
  • 27 Mendive-Tapia L, Preciado S, Garcia J, Ramon R, Kielland N, Albericio F, Lavilla R. Nat. Commun. 2015; 6: 7160
  • 28 Londregan AT, Farley KA, Limberakis C, Mullins PB, Piotrowski DW. Org. Lett. 2012; 14: 2890
  • 29 Adebomi V, Cohen R, Wills R, Chavers HA. H, Martin GE, Raj M. Angew. Chem. Int. Ed. 2019; 58: 19073
  • 30 Malins LR, deGruyter JN, Robbins KJ, Scola PM, Eastgate MD, Ghadiri MR, Baran PS. J. Am. Chem. Soc. 2017; 139: 5233