Synlett 2020; 31(14): 1413-1417
DOI: 10.1055/s-0040-1707151
letter
© Georg Thieme Verlag Stuttgart · New York

Sulfuryl Fluoride Promoted Thiocyanation of Alcohols: A Practical Method for Preparing Thiocyanates

Guofu Zhang
,
Lidi Xuan
,
Yiyong Zhao
,
We acknowledge financial support from the National Natural Science Foundation of China (20702051) and the Natural Science Foundation of Zhejiang Province (LY13B020017).
Further Information

Publication History

Received: 29 January 2020

Accepted after revision: 28 May 2020

Publication Date:
16 June 2020 (online)


Abstract

A novel SO2F2-promoted thiocyanation method for the one-step synthesis of thiocyanates through C–O bond cleavage of readily available alcohols with ammonium thiocyanate as the thiocyanating agent was developed. The method avoids the use of additional catalyst, and a variety of (hetero)arene, alkene and aliphatic alcohols reacted with high efficiency in ethyl acetate under mild conditions to afford the corresponding thiocyanates in excellent to quantitative yields with broad functional-group compatibility.

Supporting Information

 
  • References and Notes

  • 1 Piña IC, Gautschi JT, Wang G.-Y.-S, Sanders ML, Schmitz FJ, France D, Cornell-Kennon S, Sambucetti LC, Remiszewski SW, Perez LB, Bair KW, Crews P. J. Org. Chem. 2003; 68: 3866
  • 2 Elhalem E, Bailey BN, Docampo R, Ujváry I, Szajnman SH, Rodriguez JB. J. Med. Chem. 2002; 45: 3984
  • 3 Capon RJ, Skene C, Liu EH.-T, Lacey E, Gill JH, Heiland K, Friedel T. J. Org. Chem. 2001; 66: 7765
    • 4a Lu X, Wang H, Gao R, Sun D, Bi X. RSC Adv. 2014; 4: 28794
    • 4b Brown SP, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 4034
    • 4c Prabhu KR, Ramesha AR, Chandrasekaran S. J. Org. Chem. 1995; 60: 7142
    • 4d Renard P.-Y, Schwebel H, Vayron P, Josien L, Valleix A, Mioskowski C. Chem. Eur. J. 2002; 8: 2910
    • 4e Bayarmagnai B, Matheis C, Jouvin K, Goossen L.-J. Angew. Chem. Int. Ed. 2015; 54: 5753
    • 5a Goodajdar B.-M, Akbari F, Davarpanah J. Appl. Organomet. Chem. 2019; 33: e4647
    • 5b Iranpoor N, Firouzabadi H, Nowrouzi N. Tetrahedron 2006; 62: 5498
    • 5c Liu Y, Xu Y, Jung SH, Chae J. Synlett 2012; 23: 2692
    • 6a Yamaguchi K, Sakagami K, Miyamoto Y, Jin X, Mizuno N. Org. Biomol. Chem. 2014; 12: 9200
    • 6b Frei R, Courant T, Wodrich M.-D, Waser J. Chem. Eur. J. 2015; 21: 2662
    • 6c Wu Y.-q, Limburg DC, Wilkinson DE, Hamilton GS. Org. Lett. 2000; 2: 795
    • 6d Guo W, Tan W, Zhao M, Zheng L, Tao K, Chen D, Fan X. J. Org. Chem. 2018; 83: 6580
    • 7a Mokhtari B, Azhdari A, Azadi R. J. Sulfur Chem. 2009; 30: 585
    • 7b Aghapour G, Asgharzadeh A. Phosphorus, Sulfur Silicon Relat. Elem. 2014; 189: 796

      For selected SuFEx chemistry, for see:
    • 9a Dong JJ, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 9b Chen W, Dong J, Plate L, Mortenson DE, Brighty GJ, Li S, Liu Y, Galmozzi A, Lee PS, Hulce JJ, Cravatt BF, Saez E, Powers ET, Wilson IA, Sharpless KB, Kelly JW. J. Am. Chem. Soc. 2016; 138: 7353
    • 9c Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
    • 9d Liu Z, Li J, Li SH, Li G, Sharpless KB, Wu P. J. Am. Chem. Soc. 2018; 140: 2919
    • 9e Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. Angew. Chem. Int. Ed. 2017; 56: 11203
    • 9f Marra A, Dong J, Ma T, Giuntini S, Crescenzo E, Cerofolini L, Martinucci M, Luchinat C, Fragai M, Nativi C, Dondoni A. Chem. Eur. J. 2018; 24: 18981
    • 9g Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. Angew. Chem. Int. Ed. 2018; 57: 2605
    • 9h Smedley CJ, Zheng Q, Gao B, Li SH, Molino A, Duivenvoorden HM, Parker BS, Wilson DJ. D, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2019; 58: 4552
    • 10a Li C, Qin H.-L. Org. Lett. 2019; 21: 4495
    • 10b Lekkala R, Lekkala R, Moku B, Rakesh K.-P, Qin H.-L. Beilstein J. Org. Chem. 2019; 15: 976
    • 10c Zhang X, Rakesh K.-P, Qin H.-L. Chem. Commun. 2019; 55: 2845
    • 10d Chen X, Zha G.-F, Fang W.-Y, Rakesh K.-P, Qin H.-L. Chem. Commun. 2018; 54: 9011
    • 10e Chen X, Zha G.-F, Bare G, Leng J, Wang S.-M, Qin H.-L. Adv. Synth. Catal. 2017; 359: 3254
    • 10f Fang W.-Y, Qin H.-L. J. Org. Chem. 2019; 84: 5803
    • 10g Jiang Y, Sun B, Fang W.-Y, Qin H.-L. Eur. J. Org. Chem. 2019; 3190
    • 10h Zhao C, Fang W.-Y, Rakesh K.-P, Qin H.-L. Org. Chem. Front. 2018; 5: 1835
    • 10i Zhao C, Zha G.-F, Fang W.-Y, Rakesh K.-P, Qin H.-L. Eur. J. Org. Chem. 2019; 1801
    • 10j Fang W.-Y, Leng J, Qin H.-L. Chem. Asian J. 2017; 12: 2323
    • 10k Zha G.-F, Fang W.-Y, Li Y.-G, Leng J, Chen X, Qin H.-L. J. Am. Chem. Soc. 2018; 140: 17666
    • 10l Zhao C, Zha G.-F, Fang W.-Y, Alharbi NS, Qin H.-L. Tetrahedron 2019; 75: 4648
    • 10m Wang S.-M, Zhao C, Zhang X, Qin H.-L. Org. Biomol. Chem. 2019; 17: 4087
  • 11 Zhao Y, Mei G, Wang H, Zhang G, Ding C. Synlett 2019; 30: 1484
  • 12 Zhang G, Zhao Y, Xuan L, Ding C. Eur. J. Org. Chem. 2019; 4911
  • 13 Zhao Y.-Y, Zhang G, Ding C. Org. Biomol. Chem. 2019; 17: 7684
    • 14a Wang S.-M, Alharbi NS, Qin H.-L. Synthesis 2019; 51: 3901
    • 14b Schimler SD, Cismesia MA, Hanley PS, Froese RD. J, Jansma MJ, Bland DC, Sanford MS. J. Am. Chem. Soc. 2017; 139: 1452
  • 15 4-Methylbenzyl Thiocyanate (2b); Typical Procedure 4-Methylbenzyl alcohol (1b; 1.0 mmol, 1.0 equiv), NH4SCN (1.0 mmol, 1.0 equiv), Na2CO3 (4.0 mmol, 4.0 equiv), and EtOAc (2.0 mL, 0.5 M) were added sequentially to an oven-dried 30 mL reaction tube equipped with a stirrer bar. The tube was sealed with a plastic stopper and SO2F2 gas was introduced into the stirred mixture by slow bubbling from an SO2F2-filled balloon at r.t. for 5 h. The mixture was then diluted with H2O and extracted with EtOAc (3 × 25 mL). The combined organic layers were washed with brine, dried (Na2SO4), and concentrated to dryness. The residue was purified by chromatography (silica gel, EtOAc–PE) to give a yellow oil; yield: 158 mg (97%). 1H NMR (500 MHz, CDCl3): δ = 7.31–7.21 (m, 2 H), 7.18 (d, J = 7.9 Hz, 2 H), 4.13 (s, 2 H), 2.35 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 138.9, 131.3, 129.8, 128.9, 112.1, 38.3, 21.2. HRMS (EI): m/z [M+] calcd for C9H9NS: 163.0456; found: 163.0458.
  • 16 4-(Thiocyanatomethyl)phenyl Fluoridosulfate (2m) 4-(Hydroxymethyl)phenol (1m; 1.0 mmol, 1.0 equiv), NH4SCN (1.0 mmol, 1.0 equiv), Et3N (4.0 mmol, 4.0 equiv), and EtOAc (2.0 mL, 0.5 M) were added sequentially to an oven-dried 30 mL reaction tube equipped with a stirrer bar. The tube was sealed with a plastic stopper and SO2F2 gas was introduced into the stirred mixture by slow bubbling from an SO2F2-filled balloon at r.t. for 5 h. Workup as described above gave a colorless oil; yield: 193 mg (78%). 1H NMR (500 MHz, CDCl3): δ = 7.50 (d, J = 8.7 Hz, 2 H), 7.38 (d, J = 8.5 Hz, 2 H), 4.16 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 150.1, 135.5, 131.1, 121.8, 111.2, 37.1. HRMS (EI): m/z [M+] calcd for C8H6FNO3S2: 246.9773; found: 246.9796.