Synlett 2020; 31(13): 1287-1290
DOI: 10.1055/s-0040-1707140
letter
© Georg Thieme Verlag Stuttgart · New York

Decarboxylative Formylation of Aryl Halides with Glyoxylic Acid by Palladium Catalysis under Oxygen

Hualiang Cao
,
Weiwen Pu
,
Jie Zhang
,
Peijun Yan
,
Jun Zhang
,
Sheng Xu
We are grateful to the National Key Research and Development Program of China (2017YFB0306701), and the National Natural Science Foundation of China (NO. U1362111).
Further Information

Publication History

Received: 19 April 2020

Accepted after revision: 18 May 2020

Publication Date:
18 June 2020 (online)


Abstract

A new free radical/palladium cooperative catalyzed formylation of aryl halides with glyoxylic acid as the formyl source under oxygen conditions has been developed. Various aromatic and heteroaromatic aldehydes were produced in medium to good yields.

Supporting Information

 
  • References and Notes

  • 1 Ferguson LN. Chem. Rev. 1946; 38: 227
  • 2 Kantlehner W. Eur. J. Org. Chem. 2003; 2530
  • 3 Ogata Y, Kawasaki A, Sugiura F. Tetrahedron 1968; 24: 5001
  • 4 Wynberg H. Chem. Rev. 1959; 60: 169
  • 5 Downie I, Earle MJ, Heaney H, Shuhaibar KF. Tetrahedron 1993; 49: 4015
  • 6 Crounse NN. J. Am. Chem. Soc. 1949; 71: 1263
    • 7a Huang H, Li X, Yu C, Zhang Y, Mariano PS, Wang W. Angew. Chem. Int. Ed. 2017; 56: 1500
    • 7b Sun G, Lv X, Zhang Y, Lei M, Hu L. Org. Lett. 2017; 19: 4235
    • 7c Han W, Liu B, Chen J, Zhou Q. Synlett 2017; 28: 835
    • 7d Iranpoor N, Firouzabadi H, Etemadi E, Rostami A, Moghadam KR. Appl. Organomet. Chem. 2015; 29: 719
    • 7e Zhang Y, Jiang X, Wang JM, Chen J, Zhu Y. RSC Adv. 2015; 5: 17060
    • 7f Jiang X, Wang JM, Zhang Y, Chen Z, Zhu Y, Ji S. Org. Lett. 2014; 16: 3492
    • 7g Yu B, Zhao Y, Zhang H, Xu J, Hao L, Gao X, Liu Z. Chem. Commun. 2014; 50: 2330
    • 7h Korsager S, Taaning RH, Skrydstrup T. J. Am. Chem. Soc. 2013; 135: 2891
    • 7i Korsager S, Taaning RH, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2013; 78: 6112
    • 7j Serrano J, Pérez LJ, García L, Sánchez G, García J, Tyagi K, Kapdi A. RSC Adv. 2012; 2: 12237
  • 8 Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761
    • 9a Klaus S, Neumann H, Zapf A, Strübing D, Hübner S, Almena J, Riermeier T, Gro P, Sarich M, Krahnert WR, Rossen K, Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
    • 9b Neumann H, Kadyrov R, Wu XF, Beller M. Chem. Asian J. 2012; 7: 2213
    • 9c Sergeev AG, Spannen A, Beller M. J. Am. Chem. Soc. 2008; 130: 15549
  • 10 Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
  • 11 Natte K, Dumrath A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
    • 12a Qi X, Li C, Wu XA. Chem. Eur. J. 2016; 22: 5835
    • 12b Ying J, Fu L, Zhou C, Wu X. Eur. J. Org. Chem. 2018; 2780
  • 13 Huang H, Yu C, Xie H, Wang W. Angew. Chem. Int. Ed. 2017; 129: 8313
  • 14 Zhao B, Shang R, Fu Y. Org. Chem. Front. 2018; 5: 1782
  • 15 Liu Y, Pu WW, Cai LZ, Xu S, Tao XC. Chem. Commun. 2018; 54: 2166
  • 16 Shen Y. CNIPA CN 109824567 A, 2019
  • 17 Typical Procedure: Iodobenzene (1; 0.204 g, 1.0 mmol), PdCl2 (PPh3)2 (0.021 g, 0.03 mmol), glyoxylic acid monohydrate (0.552 g, 6.0 mmol) and AIBN (0.082 g, 0.05 mmol) were transferred into a 50 mL Schlenk tube that was filled with oxygen. After DMF (2.0 mL) and Et3N (0.606 g, 6.0 mmol) were added successively, the tube was sealed and the mixture was stirred at 110 °C for 4 h. Upon completion of the reaction, the mixture was poured into saturated aqueous NaCl solution (25 mL) and extracted with CH2Cl2 (4 × 15 mL). The combined organic layers were washed with brine (4 × 20 mL), dried over MgSO4, filtered, and concentrated. The residue was purified by column chroma­tography on silica gel (PE/EtOAc, 25:1) to afford the corresponding product (0.074 g, 70%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 10.01 (s, 1 H), 7.89–7.86 (m, 2 H), 7.65–7.65 (m, 1 H), 7.53 (t, J = 7.6, 2 H). 13C NMR (101 MHz, CDCl3): δ = 192.48, 136.37, 134.50, 129.77, 129.02.