Synthesis 2020; 52(14): 2099-2105
DOI: 10.1055/s-0040-1707103
paper
© Georg Thieme Verlag Stuttgart · New York

A Straightforward Synthesis of N-Substituted Ureas from Primary Amides

Nathalie Saraiva Rosa
a   Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: vincent.reboul@ensicaen.fr
,
a   Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: vincent.reboul@ensicaen.fr
,
a   Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: vincent.reboul@ensicaen.fr
,
Jean-François Lohier
a   Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: vincent.reboul@ensicaen.fr
,
b   Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA, 76000 Rouen, France
,
a   Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France   Email: vincent.reboul@ensicaen.fr
› Author Affiliations
The authors thank the Centre National de la Recherche Scientifique (CNRS), Normandie Université (RIN ChemImaging), Labex SynOrg (Grant No. ANR-11-LABX-0029), the Conseil Régional de Normandie and the Fonds Européen de Développement Régional (FEDER) for financial support.
Further Information

Publication History

Received: 13 February 2020

Accepted after revision: 06 April 2020

Publication Date:
27 April 2020 (online)


Abstract

A direct and convenient method for the preparation of N-substituted ureas is achieved by treating primary amides with phenyliodine diacetate (PIDA) in the presence of an ammonia source (NH3 or ammonium carbamate) in MeOH. The use of 2,2,2-trifluoroethanol (TFE) as the solvent increases the electrophilicity of the hypervalent iodine species and allows the synthesis of electron-poor carboxamides. This transformation involves a nucleophilic addition of ammonia on the isocyanate intermediate generated in situ by a Hofmann rearrangement of the starting amide.

Supporting Information

 
  • References

    • 1a Ghosh AK, Brindisi M. J. Med. Chem. 2020; 63: 2751
    • 1b Jagtap AD, Kondekar NB, Sadani AA, Chern JW. Curr. Med. Chem. 2017; 24: 622
    • 1c Cioffi CL, Dobri N, Freeman EE, Conlon MP, Chen P, Stafford DG, Schwarz DM. C, Golden KC, Zhu L, Kitchen DB, Barnes KD, Racz B, Qin Q, Michelotti E, Cywin CL, Martin WH, Pearson PG, Johnson G, Petrukhin K. J. Med. Chem. 2014; 57: 7731
    • 1d Belfrage AK, Gising J, Svensson F, Åkerblom E, Sköld C, Sandström A. Eur. J. Med. Chem. 2015; 978
    • 1e Nowotarski SL, Pachaiyappan B, Holshouser SL, Kutz CJ, Li Y, Huang Y, Sharma SK, Casero RA. Jr, Woster PM. Bioorg. Med. Chem. 2015; 23: 1601
    • 1f Darvesh S, Pottie IR, Darvesh KV, McDonald RS, Walsh R, Conrad S, Penwell A, Mataija D, Martin E. Bioorg. Med. Chem. 2010; 18: 2232
    • 1g Manickam M, Pillaiyar T, Boggu P, Venkateswararao E, Jalani HB, Kim N.-D, Lee SK, Jeon JS, Kim SK, Jung S.-H. Eur. J. Med. Chem. 2016; 117: 113
    • 1h Nepali K, Sharma S, Sharma M, Bedi PM. S, Dhar KL. Eur. J. Med. Chem. 2014; 77: 422
    • 1i Gong H, Yang M, Xiao YZ, Doweyko AM, Cunningham M, Wang J, Habte S, Holloway D, Burke C, Shuster D, Gao L, Carman J, Somerville JE, Nadler SG, Salter-Cid L, Barrish JC, Weinstein DS. Bioorg. Med. Chem. Lett. 2014; 24: 3268
    • 1j Li H.-Q, Lv PC, Yan T, Zhu H.-L. Anti-Cancer Agents Med. Chem. 2009; 9: 471
    • 2a Zakrzewski J, Krawczyk M. Heteroat. Chem. 2006; 17: 393
    • 2b Wada Y, Kamada Y, Hanaki K. US Patent 5833733, 1998
    • 2c Landes M, Sievernich B, Kibler E, Nuyken W, Walter H, Westphalen K.-O, Mayer H, Haden E, Mulder C, Schönhammer A, Hamprecht G. US Patent 6054410, 2000
    • 2d Achgill RK, Call LW. US Patent 4987233, 1991
    • 2e Arnold WR. US Patent 4165229, 1979
  • 3 Klingstedt F, Arve K, Eränen K, Murzin DY. Acc. Chem. Res. 2006; 39: 273
  • 4 Volz N, Clayden J. Angew. Chem. Int. Ed. 2011; 50: 12148
  • 5 Pullagurla MR, Rangisetty JB. US Patent 20190382447, 2019
  • 6 Guryanov I, Orlandin A, Viola A, Biondi B, Badocco D, Formaggio F, Ricci A, Cabri W. Org. Process Res. Dev. 2019; 23: 2746
  • 7 Oza V, Ashwell S, Almeida L, Brassil P, Breed J, Deng C, Gero T, Grondine M, Horn C, Ioannidis S, Liu D, Lyne P, Newcombe N, Pass M, Read J, Ready S, Rowsell S, Su M, Toader D, Vasbinder M, Yu D, Yu Y, Xue Y, Zabludoff S, Janetka J. J. Med. Chem. 2012; 55: 5130
  • 8 Cui K, Chen J, Wang M. PCT Int. Appl WO2016201662, 2016
  • 9 Luedtke NW, Liu Q, Tor Y. Bioorg. Med. Chem. 2003; 11: 5235
  • 10 Katayama N, Fukusumi S, Funabashi Y, Iwahi T, Ono H. J. Antibiot. 1993; 46: 606
    • 11a Lee S.-H, Yoshida K, Matsushita H, Clapham B, Koch G, Zimmermann J, Janda KD. J. Org. Chem. 2004; 69: 8829
    • 11b Lee S.-H, Clapham B, Koch G, Zimmermann J, Janda KD. Org. Lett. 2003; 5: 511
    • 11c Belfrage AK, Gising J, Svensson F, Åkerblom E, Sköld C, Sandström A. Eur. J. Org. Chem. 2015; 978
    • 11d Wu J, Xie Y, Chen X, Deng G.-J. Adv. Synth. Catal. 2016; 358: 3206
    • 11e Rakesh KP, Ramesha AB, Shantharam CS, Mantelingu K, Mallesha N. RSC Adv. 2016; 6: 108315
    • 11f Rekunge DS, Khatri CK, Chaturbhuj GU. Tetrahedron Lett. 2017; 58: 4304
  • 12 Wöhler F. Ann. Phys. Chem. 1828; 88: 253
  • 13 Browne DL, O’Brien M, Koos P, Cranwell PB, Polyzos A, Ley SV. Synlett 2012; 23: 1402
  • 14 Aubé J, Fehl C, Liu R, McLeod MC, Motiwala HF. In Comprehensive Organic Synthesis II, Vol. 6. Elsevier; Amsterdam: 2014: 598
  • 15 Loudon GM, Radhakrishna AS, Almond MR, Blodgett JK, Boutin RH. J. Org. Chem. 1984; 49: 4272
  • 16 Moriarty RM, Chany CJ. II, Vaid RK, Prakash O, Tuladhar SM. J. Org. Chem. 1993; 58: 2478
  • 18 Kumar A, Kumar N, Sharma R, Bhargava G, Mahajan D. J. Org. Chem. 2019; 84: 11323
  • 19 Thavonekham B. Synthesis 1997; 1189
  • 20 Nagarkar AG, Telvekar VN. Lett. Org. Chem. 2017; 15: 926
  • 21 Breitler S, Oldenhuis NJ, Fors BP, Buchwald SL. Org. Lett. 2011; 13: 3262
  • 22 Habibi D, Heydari S, Faraji A, Keypour H, Mahmoudabadi M. Polyhedron 2018; 151: 520
    • 23a Sardarian AR, Inaloo ID. RSC Adv. 2015; 5: 76626
    • 23b Tiwari L, Kumar V, Kumar B, Mahajan D. RSC Adv. 2018; 8: 21585
  • 24 Wang CH, Hsieh TH, Lin CC, Yeh WH, Lin CA, Chien TC. Synlett 2015; 26: 1823
  • 25 Das S, Natarajan P, König B. Chem. Eur. J. 2017; 23: 18161
  • 26 Glachet T, Marzag H, Saraiva Rosa N, Colell JF. P, Zhang G, Warren WS, Franck X, Theis T, Reboul V. J. Am. Chem. Soc. 2019; 141: 13689
  • 27 Single crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation from an Et2O solution. CCDC 1896523 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 28 No reaction occurred between (4-methoxyphenyl)methyl carbamate and ammonia in methanol at rt.
  • 29 Boutin RH, Loudon GM. J. Org. Chem. 1984; 49: 4277
  • 30 The same trend was observed with other methods: see references 18, 20 and 23b.
  • 31 Chaabouni S, Lohier JF, Barthelemy AL, Glachet T, Anselmi E, Dagousset G, Diter P, Pégot B, Magnier E, Reboul V. Chem. Eur. J. 2018; 24: 17006
  • 33 Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235