Synlett 2021; 32(16): 1629-1632
DOI: 10.1055/s-0040-1706683
cluster
Modern Nickel-Catalyzed Reactions

Nickel Hydride Catalyzed Cleavage of Allyl Ethers Induced by Isomerization

Prasad M. Kathe
a  Institute of Organic Chemistry, Faculty of Science and Mathematics, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
,
Andreas Berkefeld
b  Institute of Inorganic Chemistry, Faculty of Science and Mathematics, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
,
a  Institute of Organic Chemistry, Faculty of Science and Mathematics, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
› Author Affiliations
Financial support from the German Academic Exchange Service New Delhi, the Deutscher Akademischer Austauschdienst (fellowship for P.K.), and the University of Tübingen is gratefully acknowledged.


Abstract

This report discloses the deallylation of O- and N-allyl functional groups by using a combination of a Ni-H precatalyst and excess Brønsted acid. Key steps are the isomerization of the O- or N-allyl group through Ni-catalyzed double-bond migration followed by Brønsted acid induced O/N–C bond hydrolysis. A variety of functional groups are tolerated in this protocol, highlighting its synthetic value.

Supporting Information



Publication History

Received: 04 November 2020

Accepted: 27 December 2020

Publication Date:
22 January 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Guibé F. Tetrahedron 1997; 53: 13509
    • 3a Kitov PI, Bundle DR. Org. Lett. 2001; 3: 2835
    • 3b Bailey WF, England MD, Mealy MJ, Thongsornkleeb C, Teng L. Org. Lett. 2000; 2: 489
    • 3c Yadav JS, Chandrasekhar S, Sumithra G, Kache R. Tetrahedron Lett. 1996; 37: 6603
    • 3d Atienza BJ. P, Truong N, Williams FJ. Org. Lett. 2018; 20: 6332
    • 4a Walia M, Teijaro CN, Gardner A, Tran T, Kang J, Zhao S, O’Connor SE, Courdavault V, Andrade RB. J. Nat. Prod. 2020; 83: 2425
    • 4b Liu Z, Meng Y, Yuan P, Wang Z, Gao J.-M, Zheng H. Org. Lett. 2020; 22: 520
    • 4c Praveen Kumar V, Kishi Y. J. Am. Chem. Soc. 2020; 142: 14743
    • 5a Gärtner D, Konnerth H, von Wangelin AJ. Catal. Sci. Technol. 2013; 3: 2541
    • 5b Tanaka S, Suzuki Y, Saburi H, Kitamura M. Tetrahedron 2015; 71: 6559
    • 5c Vutukuri DR, Bharathi P, Yu Z, Rajasekaran K, Tran M.-H, Thayumanavan S. J. Org. Chem. 2003; 68: 1146
    • 5d Taniguchi T, Ogasawara K. Angew. Chem. Int. Ed. 1998; 37: 1136
    • 5e Honda M, Morita H, Nagakura I. J. Org. Chem. 1997; 62: 8932
    • 5f Mao Y, Liu Y, Hu Y, Wang L, Zhang S, Wang W. ACS Catal. 2018; 8: 3016
    • 5g Hemming DS, Talbot EP, Steel PG. Tetrahedron Lett. 2017; 58: 17
    • 5h Chouhan M, Kumar K, Sharma R, Grover V, Nair VA. Tetrahedron Lett. 2013; 54: 4540
    • 5i Giedyk M, Turkowska J, Lepak S, Marculewicz M, óProinsias K, Gryko D. Org. Lett. 2017; 19: 2670
    • 5j Meng C, Niu H, Ning J, Wu W, Yi J. Molecules 2020; 25: 602
    • 6a Cadot C, Dalko PI, Cossy J. Tetrahedron Lett. 2002; 43: 1839
    • 6b Corey EJ, Suggs JW. J. Org. Chem. 1973; 38: 3224
    • 6c Varela-Álvarez A, Sordo JA, Piedra E, Nebra N, Cadierno V, Gimeno J. Chem. Eur. J. 2011; 17: 10583
    • 7a Huang G, Ke M, Tao Y, Chen F. J. Org. Chem. 2020; 85: 5321 ; corrigendum: J. Org. Chem.; 2020, 85, 6830
    • 7b Gao W, Zhang X, Xie X, Ding S. Chem. Commun. 2020; 56: 2012
    • 7c Trost BM, Cregg JJ, Quach N. J. Am. Chem. Soc. 2017; 139: 5133
    • 7d Bolyog-Nagy E, Udvardy A, Barczáné-Bertók A, Joó F, Kathó A. Inorg. Chim. Acta 2017; 455: 514
    • 7e Li H, Mazet C. J. Am. Chem. Soc. 2015; 137: 10720
    • 7f Erbing E, Vázquez-Romero A, BermejoGómez A, Platero-Prats AE, Carson F, Zou X, Tolstoy P, Martín-Matute B. Chem. Eur. J. 2016; 22: 15659
  • 8 Ghosh B, Kulkarni SS. Chem. Asian J. 2020; 15: 450
  • 9 Ikeuchi K, Murasawa K, Ohara K, Yamada H. Org. Lett. 2019; 21: 6638
  • 10 Kathe PM, Caciuleanu A, Berkefeld A, Fleischer I. J. Org. Chem. 2020; 85: 15183
  • 11 Kathe PM, Fleischer I. Org. Lett. 2019; 21: 2213
    • 12a Gehrtz PH, Geiger V, Schmidt T, Sršan L, Fleischer I. Org. Lett. 2019; 21: 50
    • 12b Gehrtz PH, Kathe P, Fleischer I. Chem. Eur. J. 2018; 24: 8774
    • 13a Neary MC, Quinlivan PJ, Parkin G. Inorg. Chem. 2018; 57: 374
    • 13b Koch F, Berkefeld A. Dalton Trans. 2018; 47: 10561
    • 13c Tolman CA. Inorg. Chem. 1972; 11: 3128
    • 14a Ohmura N, Nakamura A, Hamasaki A, Tokunaga M. Eur. J. Org. Chem. 2008; 2008: 5042
    • 14b Zacuto MJ, Xu F. J. Org. Chem. 2007; 72: 6298
    • 14c Kamijo S, Huo Z, Jin T, Kanazawa C, Yamamoto Y. J. Org. Chem. 2005; 70: 6389
    • 14d Garro-Helion F, Merzouk A, Guibé F. J. Org. Chem. 1993; 58: 6109
  • 15 Hayakawa Y, Wakabayashi S, Kato H, Noyori R. J. Am. Chem. Soc. 1990; 112: 1691
  • 16 2-Methoxyphenol (2a): Typical Procedure In a glove box, a flame-dried 15 mL Schlenk tube was charged with [Ni(PMe3)4H]N(SO2CF3)2 (1.6 mg, 2.48 μmol, 1 mol%). The Schlenk tube was removed from the glove box and anhyd THF (1.5 mL, 0.16 M) was added. 1-(Allyloxy)-2-methoxybenzene (1a; 41.1 mg, 0.250 mmol, 1 equiv) was then added under an argon counterflow and the mixture was stirred at RT for 30 min. TsOH·H2O (1 equiv) was added, and the mixture was refluxed for 1 h. The reaction was quenched by addition of EtOAc (2 mL) and H2O (2 mL), and the mixture was transferred to a separatory funnel. The aqueous phase was extracted with EtOAc (3 × 5 mL), and the combined organic phases were dried (MgSO4). Rotary evaporation gave pure 2a, without any chromatographic purification, as a light-brown oil; yield: 26.1 mg (0.21 mmol, 84%). The NMR spectral data matched those reported in the literature.17 Note: The glove box setup for the reaction is not necessary: the catalyst can be stored on the bench under an inert atmosphere.
  • 17 Song LX, Wang HM, Yang Y, Xu P. Bull. Chem. Soc. Jpn. 2007; 80: 2185