Synthesis 2021; 53(11): 1980-1988
DOI: 10.1055/s-0040-1706642
paper

An Ugi Reaction/Intramolecular Cyclization/Oxidation Cascade towards Tetrazole-Linked Dibenzoxazepines

Qiang Zheng
,
André Boltjes
,
This research has been supported (A.D.) by the Center for Scientific Review, National Institute of Health (NIH) (2R01GM097082-05), the European Lead Factory (IMI) (Grant No. 115489), the Qatar National Research Foundation (NPRP6-065-3-012). Funding was also received through the Horizon 2020 Framework Programme, AEGIS (Accelerated Early stage drug dIScovery) Innovative Training Network (ITN) (Grant No. 675555) and COFUND ALERT (Grant No. 665250), and the KWF Kankerbestrijding (Dutch Cancer Society) (Grant No. 10504). Q.Z. acknowledges the China Scholarship Council for support.


In memoriam Albert van Leusen

Abstract

A series of tetrazole-linked dibenzo[b,f][1,4]oxazepines is synthesized through a short sequence involving an Ugi tetrazole reaction. The intermediate tetrazole undergoes a potassium carbonate mediated SNAr cyclization, followed by oxidation to afford the target tricyclic heterocyclic scaffold. The optimization, scope and limitations of this two-step and efficient methodology are investigated. A 1000-member library of tetrazole-linked dibenzo[b,f][1,4]oxazepines is generated and the physicochemical properties are analyzed. great

Supporting Information



Publication History

Received: 16 October 2020

Accepted after revision: 19 November 2020

Article published online:
15 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bemis GW, Murcko MA. J. Med. Chem. 1996; 39: 2887
  • 2 Rothenberg C, Achanta S, Svendsen ER, Jordt SE. Ann. N. Y. Acad. Sci. 2016; 1378: 96
  • 3 Preti D, Szallasi A, Patacchini R. Expert Opin. Ther. Pat. 2012; 22: 663
  • 4 Heel RC, Brogden RN, Speight TM, Avery GS. Drugs 1978; 15: 198
  • 5 Smith RS. Jr, Ayd FJ. Jr. J. Clin. Psychiatry 1981; 42: 238
  • 6 Gijsen HJ. M, Berthelot D, Zaja M, Brone B, Geuens I, Mercken M. J. Med. Chem. 2010; 53: 7011
  • 7 Warawa EJ, Migler BM, Gatos GC, McLaren FM, Nelson CL, Kirkland KM. J. Med. Chem. 2001; 44: 372
  • 8 Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 14228
  • 9 Neochoritis CG, Tsoleridis CA, Stephanidou-Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ. J. Med. Chem. 2010; 53: 8409
  • 10 Zabrocki J, Smith GD, Dunbar JB. Jr, Iijima H, Marshall GR. J. Am. Chem. Soc. 1988; 110: 5875
  • 11 Neochoritis CG, Zhao T, Dömling A. Chem. Rev. 2019; 119: 1970
  • 12 Mearns BM. Nat. Rev. Cardiol. 2011; 8: 304
  • 13 Saltiel E, Brogden RN. Drugs 1986; 32: 222
  • 14 Harris RW, Moore WL. Jr, Arensman JB, Rissing JP. J. Antimicrob. Chemother. 1984; 14: 499
  • 15 Krovat EM, Langer T. J. Med. Chem. 2003; 46: 716
  • 16 Kristensen JL, Püschl A, Jensen M, Risgaard R, Christoffersen CT, Bang-Andersen B, Balle T. J. Med. Chem. 2010; 53: 7021
  • 17 Yamamoto K, Tamura T, Henmi K, Kuboyama T, Yanagisawa A, Matsubara M, Takahashi Y, Suzuki M, Saito J, Ueno K, Shuto S. J. Med. Chem. 2018; 61: 10067
  • 18 Alexakos PD, Wardrop DJ. J. Org. Chem. 2019; 84: 12430
  • 19 Ghandi M, Zarezadeh N, Abbasi A. Mol. Diversity 2016; 20: 483
  • 20 Lu S, Jessen B, Strock C, Will Y. Toxicol. in Vitro 2012; 26: 613
  • 21 Zhang C, Yang Z, Qin X, Ma J, Sun C, Huang H, Li Q, Ju J. Org. Lett. 2018; 20: 7633
  • 22 Domling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
  • 23 Rocha RO, Rodrigues MO, Neto BA. ACS Omega 2020; 5: 972
  • 24 Ojeda-Carralero GM, Ceballos LG, Coro J, Rivera DG. ACS Comb. Sci. 2020; 22: 475
  • 25 Ugi I, Werner B, Domling A. In Targets in Heterocyclic Systems: Chemistry and Properties, Vol. 4. Attanasi OA, Spinelli D. Italian Chemical Society; Rome: 2000: 1-23
  • 26 Paira M. Chem. Biol. Interface 2019; 9: 186
  • 27 Sinha MK, Khoury K, Herdtweck E, Domling A. Org. Biomol. Chem. 2013; 11: 4792
  • 28 Vézina-Dawod S, Gerber N, Liang X, Biron E. Tetrahedron 2017; 73: 6347
  • 29 Cristau P, Vors JP, Zhu J. Org. Lett. 2001; 3: 4079
  • 30 Ghandi M, Efteghar I, Abbasi A. J. Iran. Chem. Soc. 2019; 16: 325
  • 31 Xu J, Li Y, Meng J.-P, Lei J, Chen Z.-Z, Tang DY, Zhu J, Xu ZG. Tetrahedron Lett. 2017; 58: 1640
  • 32 Hu W, Teng F, Hu H, Luo S, Zhu Q. J. Org. Chem. 2019; 84: 6524
  • 33 Masquelin T, Bui H, Brickley B, Stephenson G, Schwerkoske J, Hulme C. Tetrahedron Lett. 2006; 47: 2989
  • 34 Wang Y, Shaabani S, Ahmadianmoghaddam M, Gao L, Xu R, Dömling A. ACS Cent. Sci. 2019; 5: 451
  • 35 Wang Y, Patil P, Kurpiewska K, Kalinowska-Tluscik J, Dömling A. Org. Lett. 2019; 21: 3533
  • 36 Di L, Kerns EH. Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic Press, Dec 17. 2015
  • 37 Sander T, Freyss J, von Korff M, Rufener C. J. Chem. Inf. Model. 2015; 55: 460-473
  • 38 Pirok G, Máté N, Varga J, Szegezdi J, Vargyas M, Dóránt S, Csizmadia F. J. Chem. Inf. Model. 2006; 46: 563
  • 39 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Adv. Drug Delivery Rev. 2001; 46: 3
  • 40 Wager TT, Hou X, Verhoest PR, Villalobos A. ACS Chem. Neurosci. 2016; 7: 767
  • 41 Neochoritis CG, Shaabani S, Groves MR, Dömling A. Sci. Adv. 2019; 5: eaaw4607
  • 42 Patil P, Ahmadianmoghaddam M, Dömling A. Green Chem. 2020; 22: 6902