Synthesis 2021; 53(08): 1457-1470
DOI: 10.1055/s-0040-1706606
paper

Gold Catalysis of Non-Conjugated Haloacetylenes

Hannah Siera
,
Nina Semleit
,
Mathis Kreuzahler
,
Christoph Wölper
,
This work was supported by the Deutsche Forschungsgemeinschaft (DFG; HA 2973/17-1).


Abstract

Gold-catalyzed reactions of conjugated haloacetylenes are well known and usually result in the formation of addition or dimerization products. Herein, we report a gold-catalyzed reaction of non-conjugated­ haloacetylenes, which leads exclusively to the halogenated cyclization products. Remarkable is the gold-catalyzed reaction of tritylhaloacetylenes to haloindene derivatives, as mechanistic studies reveal that an 1,2-aryl shift occurs in the initially formed gold complex. The potential functionalization at the halogen atom and the wide scope of these cyclization reactions make them an attractive method for the construction of cyclic systems.

Supporting Information



Publication History

Received: 28 July 2020

Accepted after revision: 21 October 2020

Article published online:
26 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wu W, Jiang H. Acc. Chem. Res. 2014; 47: 2483
  • 2 Viehe HG, Merényi R, Oth JF. M, Valange P. Angew. Chem. Int. Ed. 1964; 3: 746; Angew. Chem. 1964, 76: 888
  • 3 Fabig S, Janiszewski A, Floß M, Kreuzahler M, Haberhauer G. J. Org. Chem. 2018; 83: 7878
  • 4 García P, Izquierdo C, Iglesias-Sigüenza J, Díez E, Fernández R, Lassaletta JM. Chem. Eur. J. 2020; 26: 629
  • 5 Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 9433 ; Angew. Chem. 2020, 132, 9519
  • 6 Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 17739 ; Angew. Chem. 2020, 132, 17892
  • 7 de Orbe ME, Zanini M, Quinonero O, Echavarren AM. ACS Catal. 2019; 9: 7817
  • 8 Kreuzahler M, Daniels A, Wölper C, Haberhauer G. J. Am. Chem. Soc. 2019; 141: 1337
  • 9 Kreuzahler M, Haberhauer G. J. Org. Chem. 2019; 84: 8210
  • 10 Bai Y.-B, Luo Z, Wang Y, Gao J.-M, Zhang L. J. Am. Chem. Soc. 2018; 140: 5860
  • 11 Mader S, Molinari L, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2015; 21: 3910
  • 12 Nösel P, Lauterbach T, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2013; 19: 8634
  • 13 Hashmi AS. K. Gold Bull. (Berlin, Ger.) 2004; 37: 51
  • 14 Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
  • 15 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
  • 16 Hashmi AS. K. Acc. Chem. Res. 2014; 47: 864
  • 17 Hashmi AS. K, Lauterbach T, Nösel P, Vilhelmsen MH, Rudolph M, Rominger F. Chem. Eur. J. 2013; 19: 1058
  • 18 Carvalho JF. S, Louvel J, Doornbos ML. J, Klaasse E, Yu Z, Brussee J, Ijzerman AP. J. Med. Chem. 2013; 56: 2828
  • 19 Gulia N, Pigulski B, Charewicz M, Szafert S. Chem. Eur. J. 2014; 20: 2746
  • 20 Wang Y, Ji K, Lan S, Zhang L. Angew. Chem. Int. Ed. 2012; 51: 1915 ; Angew. Chem. 2012, 124, 1951
  • 21 Lykakis IN, Efe C, Gryparis C, Stratakis M. Eur. J. Org. Chem. 2011; 2011: 2334
  • 22 Nevado C, Echavarren AM. Chem. Eur. J. 2005; 11: 3155
  • 23 Subburaj K, Katoch R, Murugesh MG, Trivedi GK. Tetra­hedron 1997; 53: 12621
  • 24 Xu Z, Chen H, Wang Z, Ying A, Zhang L. J. Am. Chem. Soc. 2016; 138: 5515
  • 25 Kreuzahler M, Adam A, Haberhauer G. Chem. Eur. J. 2019; 25: 12689
  • 26 Nieto-Oberhuber C, Muñoz MP, López S, Jiménez-Núñez E, Nevado C, Herrero-Gómez E, Raducan M, Echavarren AM. Chem. Eur. J. 2006; 12: 1677
  • 27 Fehr C, Vuagnoux M, Buzas A, Arpagaus J, Sommer H. Chem. Eur. J. 2011; 17: 6214
  • 28 Nieto-Oberhuber C, López S, Echavarren AM. J. Am. Chem. Soc. 2005; 127: 6178
  • 29 de Frémont P, Scott NM, Stevens ED, Nolan SP. Organometallics 2005; 24: 2411
  • 30 Mézailles N, Ricard L, Gagosz F. Org. Lett. 2005; 7: 4133
  • 31 Hashmi AS. K, Weyrauch JP, Rudolph M, Kurpejović E. Angew. Chem. Int. Ed. 2004; 43: 6545 ; Angew. Chem. 2004, 116, 6707
  • 32 Nösel P, Moghimi S, Hendrich C, Haupt M, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2014; 356: 3755
  • 33 Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett. 1989; 157: 200
  • 34 Becke AD. Phys. Rev. A: At., Mol., Opt. Phys. 1988; 38: 3098
  • 35 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
  • 36 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 37 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 38 Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Theor. Chim. Acta 1990; 77: 123
  • 39 Murase H, Senda K, Senoo M, Hata T, Urabe H. Chem. Eur. J. 2014; 20: 317
  • 40 Jongcharoenkamol J, Chuathong P, Amako Y, Kono M, Poonswat K, Ruchirawat S, Ploypradith P. J. Org. Chem. 2018; 83: 13184