Synlett 2020; 31(19): 1880-1887
DOI: 10.1055/s-0040-1706536
cluster
Integrated Synthesis Using Continuous-Flow Technologies

Continuous-Flow Reactions Mediated by Main Group Organometallics

Johannes H. Harenberg
,
Niels Weidmann
,
Paul Knochel


In memory of Professor Jun-ichi Yoshida

Abstract

The generation of reactive organometallic reagents in batch is often complicated by the low thermal stability of these important synthetic intermediates and can require low reaction temperatures and special reaction conditions. However, the use of continuous-flow setups and microreactors has led to a revolution in this field. In this short review, an overview is given of recent advances in this area, with a focus on the main group organometallics of Li, Na, and K.



Publication History

Received: 07 August 2020

Accepted after revision: 06 September 2020

Article published online:
09 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Yoshida J.-i. Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley; Chichester: 2008
    • 2a Browne DL, Baumann M, Harji BH, Baxendale IR, Ley SV. Org. Lett. 2011; 13: 3312
    • 2b Brodmann T, Koos P, Metzger A, Knochel P, Ley SV. Org. Process Res. Dev. 2012; 16: 1102
    • 2c Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV. Angew. Chem. Int. Ed. 2011; 50: 1190
    • 2d Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
    • 3a Wakami H, Yoshida J.-i. Org. Process Res. Dev. 2005; 9: 787
    • 3b Nagaki A, Kenmoku A, Moriwaki Y, Hayashi A, Yoshida J.-i. Angew. Chem. Int. Ed. 2010; 49: 7543
    • 3c Yoshida J.-i. Chem. Rec. 2010; 10: 332
    • 3d Kim H, Nagaki A, Yoshida J.-i. Nat. Commun. 2011; 2: 264
    • 4a Comer E, Organ MG. J. Am. Chem. Soc. 2005; 127: 8160
    • 4b Price GA, Bogdan AR, Aguirre AL, Iwai T, Djuric SW, Organ MG. Catal. Sci. Technol. 2016; 6: 4733
    • 4c Price GA, Hassan A, Chandrasoma N, Bogdan AR, Djuric SW, Organ MG. Angew. Chem. Int. Ed. 2017; 56: 13347
    • 5a Yoshida J.-i, Nagaki A, Yamada T. Chem. Eur. J. 2008; 14: 7450
    • 5b Cantillo D, Kappe CO. ChemCatChem 2014; 6: 3286
    • 5c Degennaro L, Carlucci C, De Angelis S, Luisi R. J. Flow Chem. 2016; 6: 136
    • 5d Movsisyan M, Delbeke EI. P, Berton JK. E. T, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892
    • 5e Yoshida J.-i, Kim H, Nagaki A. J. Flow Chem. 2017; 7: 60
    • 5f Colella M, Nagaki A, Luisi R. Chem. Eur. J. 2020; 26: 19
  • 6 Woltornist RA, Ma Y, Algera RF, Zhou Y, Zhang Z, Collum DB. Synthesis 2020; 52: 1478
    • 7a Usutani H, Tomida Y, Nagaki A, Okamoto H, Nokami T, Yoshida J.-i. J. Am. Chem. Soc. 2007; 129: 3046
    • 7b Nagaki A, Ichinari D, Yoshida J.-i. J. Am. Chem. Soc. 2014; 136: 12245
    • 7c Nagaki A, Takabayashi N, Tomida Y, Yoshida J.-i. Org. Lett. 2008; 10: 3937
  • 8 Ushiogi Y, Hase T, Iinuma Y, Takata A, Yoshida J.-i. Chem. Commun. 2007; 2947
  • 9 Nagaki A, Takizawa E, Yoshida J.-i. J. Am. Chem. Soc. 2009; 131: 1654 ; corrigendum: J. Am. Chem. Soc. 2009, 131, 3787
  • 10 Vila C, Giannerini M, Hornillos V, Fañanás-Mastral M, Feringa BL. Chem. Sci. 2014; 5: 1361
  • 11 Tomida Y, Nagaki A, Yoshida J.-i. J. Am. Chem. Soc. 2011; 133: 3744
  • 12 Nagaki A, Matsuo C, Kim S, Saito K, Miyazaki A, Yoshida J.-i. Angew. Chem. Int. Ed. 2012; 51: 3245
    • 13a Parham WE, Bradsher CK. Acc. Chem. Res. 1982; 15: 300
    • 13b Leroux F, Schlosser M, Zohar E, Marek I. The Preparation of Organolithium Reagents and Intermediates. In Patai’s Chemistry of the Functional Groups. Rappoport Z. Wiley; New York: 2009. DOI: DOI 10.1002/9780470682531.pat0305
    • 14a Boudier A, Bromm LO, Lotz M, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 4415
    • 14b Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
  • 15 Clayden J. Organolithiums: Selectivity for Synthesis 2002
  • 16 Lee H.-J, Kim H, Yoshida J.-i, Kim D.-P. Chem. Commun. 2018; 54: 547
  • 17 Kim H, Min K.-I, Inoue K, Im DJ, Kim D.-P, Yoshida J.-i. Science 2016; 352: 691
  • 18 Kim H, Inoue K, Yoshida J.-i. Angew. Chem. Int. Ed. 2017; 56: 7863
    • 19a Müller ST. R, Hokamp T, Ehrmann S, Hellier P, Wirth T. Chem. Eur. J. 2016; 22: 11940
    • 19b Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida J.-i, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 1567
    • 19c Kleoff M, Schwan J, Boeser L, Hartmayer B, Christmann M, Sarkar B, Heretsch P. Org. Lett. 2020; 22: 902
  • 20 Ketels M, Konrad DB, Karaghiosoff K, Trauner D, Knochel P. Org. Lett. 2017; 19: 1666
  • 21 Ketels M, Ziegler DS, Knochel P. Synlett 2017; 28: 2817
  • 22 Becker MR, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 12501
  • 23 Becker MR, Ganiek MA, Knochel P. Chem. Sci. 2015; 6: 6649
  • 24 Ketels M, Ganiek MA, Weidmann N, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 12770
  • 25 Nishimura RH. V, Weidmann N, Knochel P. Synthesis 2020; DOI: in press; 10.1055/s-0040-1707167.
  • 26 Wong JY. F, Tobin JM, Vilela F, Barker G. Chem. Eur. J. 2019; 25: 12439
  • 27 Giovine A, Musio B, Degennaro L, Falcicchio A, Nagaki A, Yoshida J.-i, Luisi R. Chem. Eur. J. 2013; 19: 1872
  • 28 Nagaki A, Tsuchihashi Y, Haraki S, Yoshida J.-i. Org. Biomol. Chem. 2015; 13: 7140
  • 29 Weidmann N, Harenberg JH, Knochel P. Org. Lett. 2020; 22: 5895
  • 30 Takahashi Y, Ashikari Y, Takumi M, Shimizu Y, Jiang Y, Higuma R, Ishikawa S, Sakaue H, Shite I, Maekawa K, Aizawa Y, Yamashita H, Yonekura Y, Colella M, Luisi R, Takegawa T, Fujita C, Nagaki A. Eur. J. Org. Chem. 2020; 618
    • 31a Seebach D. Angew. Chem. Int. Ed. 1969; 8: 639
    • 31b Seebach D. Angew. Chem. 1979; 91: 259
  • 32 Nagaki A, Takahashi Y, Yoshida J.-i. Angew. Chem. Int. Ed. 2016; 55: 5327
  • 33 Fanelli F, Parisi G, Degennaro L, Luisi R. Beilstein J. Org. Chem. 2017; 13: 520
  • 34 Ganiek MA, Becker MR, Berionni G, Zipse H, Knochel P. Chem. Eur. J. 2017; 23: 10280
  • 35 Villieras J, Perriot P, Normant JF. Synthesis 1979; 502
  • 36 Hafner A, Mancino V, Meisenbach M, Schenkel B, Sedelmeier J. Org. Lett. 2017; 19: 786
  • 37 Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 10924
  • 38 Hartwig J, Metternich JB, Nikbin N, Kirschning A, Ley SV. Org. Biomol. Chem. 2014; 12: 3611
    • 39a Köckinger M, Ciaglia T, Bersier M, Hanselmann P, Gutmann B, Kappe CO. Green Chem. 2018; 20: 108
    • 39b Koeckinger M, Hone CA, Gutmann B, Hanselmann P, Bersier M, Torvisco A, Kappe CO. Org. Process Res. Dev. 2018; 22: 1553
  • 40 von Keutz T, Cantillo D, Kappe CO. Org. Lett. 2019; 21: 10094
  • 41 Wu J, Yang X, He Z, Mao X, Hatton TA, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 8416
  • 42 Heinz B, Djukanovic D, Ganiek MA, Martin B, Schenkel B, Knochel P. Org. Lett. 2020; 22: 493
  • 43 Ganiek MA, Ivanova MV, Martin B, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 17249
    • 44a Algera RF, Ma Y, Collum DB. J. Am. Chem. Soc. 2017; 139: 15197
    • 44b Algera RF, Ma Y, Collum DB. J. Am. Chem. Soc. 2017; 139: 7921
    • 44c Algera RF, Ma Y, Collum DB. J. Am. Chem. Soc. 2017; 139: 11544
    • 44d Ma Y, Algera RF, Collum DB. J. Org. Chem. 2016; 81: 11312
  • 45 Weidmann N, Ketels M, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 10748
  • 46 Harenberg JH, Weidmann N, Knochel P. Angew. Chem. Int. Ed. 2020; 59: 12225
  • 47 Lee H.-J, Kim H, Kim D.-P. Chem. Eur. J. 2019; 25: 11641