Synthesis 2021; 53(06): 1137-1148
DOI: 10.1055/s-0040-1706474
paper

Highly Functionalized Pyrrolylpyridines from 2-(Acylethynyl)-pyrroles

Denis N. Tomilin
,
Lyubov N. Sobenina
,
Igor A. Ushakov
,
Boris A. Trofimov
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russia   Email: boris_trofimov@irioch.irk.ru
› Author Affiliations
This work was supported by the Russian Science Foundation (Project 19-73-10063).


Abstract

A novel family of pharmaceutically prospective, densely functionalized (aryl-, hetaryl-, acyl-, and vinyl-substituted) pyrrolylpyridines has been assembled in up to 95% yields via the amination (NH4Cl/K2CO3/DMSO system, 90 °C, 16 h) of 2-(acylethynyl)pyrroles, followed by cyclization (MeOH, reflux, 6 h, up to 90% yield) of the formed intermediate 1-(pyrrol-2-yl)-1-aminoenones with acetylenic ketones (Bohlmann–Rahtz reaction). The intermediate pyrrolyl aminodienones, prospective building blocks for organic synthesis, can be separately synthesized (DMSO, 90 °C, 6 h) in 70–86% yields. A novel facet of this chemistry is stereoselective synthesis of C-vinylated pyridines, (E)-3-[5-acyl-2-aryl-6-(pyrrol-2-yl)pyridin-3-yl]-1-arylprop-2-en-1-ones, by involving the second molecule of acylacetylene into the reaction.

Supporting Information



Publication History

Received: 02 June 2020

Accepted after revision: 31 August 2020

Article published online:
05 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lehuédé J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond J.-M. Eur. J. Med. Chem. 1999; 34: 991
    • 2a Dowell RI, Hadley EM. J. Med. Chem. 1992; 35: 800
    • 2b Raines RT, Vasta J. US 2016280701A1, 2016
  • 3 de Laszlo SE, Visco D, Agarwal L, Chang L, Chin J, Croft G, Forsyth A, Fletcher D, Frantz B, Hacker C, Hanlon W, Harper C, Kostura M, Li B, Luell S, MacCoss M, Mantlo N, O’Neill EA, Orevillo C, Pang M, Parsons J, Rolando A, Sahly Y, Sidler K, Widmer WR, O’Keefe SJ. Bioorg. Med. Chem. Lett. 1998; 8: 2689
  • 4 Chang LL, de Laszlo SE, Kim D, Mantlo NB. EP 0859771A1, 1996
  • 5 Akula M, Sridevi JP, Yogeeswari P, Sriram D, Bhattacharya A. Monatsh. Chem. 2014; 145: 811
    • 6a Klappa JJ, Geers SA, Schmidtke SJ, MacManus-Spencer LA, McNeill K. Dalton Trans. 2004; 883
    • 6b Wang H, Zeng Y, Ma JS, Fu H, Yao J, Mikhaleva AI, Trofimov BA. Chem. Commun. 2009; 5457
    • 6c Pucci D, Aiello I, Aprea A, Bellusci A, Crispini A, Ghedini M. Chem. Commun. 2009; 1550
    • 6d Annunziata L, Pappalardo D, Tedesco C, Pellecchia C. Macromolecules 2009; 42: 5572
    • 6e Gowda AS, Petersen JL, Milsmann C. Inorg. Chem. 2018; 57: 1919
  • 7 Yadav S, Singh A, Rashid N, Ghotia M, Roy TK, Ingole PP, Ray S, Mobin SM, Dash C. ChemistrySelect 2018; 3: 9469
  • 8 Chen J.-J, Xu Y.-C, Gan Z.-L, Peng X, Yi X.-Y. Eur. J. Inorg. Chem. 2019; 2019: 1733
  • 9 García MA, Farrán MA, María DS, Claramunt RM, Torralba MC, Torres MR, Jaime C, Elguero J. Molecules 2015; 20: 9862
    • 10a Sobenina LN, Sagitova EF, Markova MV, Ushakov IA, Ivanov AV, Trofimov BA. Tetrahedron Lett. 2018; 59: 4047
    • 10b Sagitova EF, Sobenina LN, Tomilin DN, Markova MV, Ushakov IA, Trofimov BA. Mendeleev Commun. 2019; 29: 252
    • 11a Trofimov BA, Stepanova ZV, Sobenina LN, Mikhaleva AI, Ushakov IA. Tetrahedron Lett. 2004; 45: 6513
    • 11b Trofimov BA, Sobenina LN. Targets in Heterocyclic Systems, Vol. 13. Attanasi OA, Spinelli D. Società Chimica Italiana; Roma: 2009: 92-119
    • 11c Sobenina LN, Tomilin DN, Petrova OV, Gulia N, Osowska K, Szafert S, Mikhaleva AI, Trofimov BA. Russ. J. Org. Chem. 2010; 46: 1373
    • 11d Gotsko MD, Sobenina LN, Tomilin DN, Ushakov IA, Dogadina AV, Trofimov BA. Tetrahedron Lett. 2015; 56: 4657
    • 11e Tomilin DN, Pigulski B, Gulia N, Arendt A, Sobenina LN, Mikhaleva AI, Szafert S, Trofimov BA. RSC Adv. 2015; 5: 73241
    • 11f Tomilin DN, Gotsko MD, Sobenina LN, Ushakov IA, Afonin AV, Soshnikov DY, Trofimov AB, Koldobsky AB, Trofimov BA. J. Fluorine Chem. 2016; 186: 1
    • 11g Pigulski B, Arendt A, Tomilin DN, Sobenina LN, Trofimov BA, Szafert S. J. Org. Chem. 2016; 81: 9188
    • 12a Bagley MC, Chapaneri K, Dale JW, Xiong X, Bower J. J. Org. Chem. 2005; 70: 1389
    • 12b Yang T, Deng Z, Wang K.-H, Li P, Huang D, Su Y, Hu Y. J. Org. Chem. 2020; 85: 924
  • 13 Bagley MC, Glover C, Merritt EA. Synlett 2007; 2459
    • 14a Wlochal J, Davies RD. M, Burton J. Org. Lett. 2014; 16: 4094
    • 14b Christy MP, Johnson T, McNerlin CD, Woodard J, Nelson AT, Lim B, Hamilton TL, Freiberg KM, Siegel D. Org. Lett. 2020; 22: 2365
    • 14c Marvadi SK, Krishna VS, Surineni G, Srilakshmi Reshma R, Sridhar B, Sriram D, Kantevari S. Bioorg. Chem. 2020; 96: 103626
    • 15a Yoshimatsu M, Tanaka M, Fujimura Y, Ito Y, Goto Y, Kobayashi Y, Wasada H, Hatae N, Tanabe G, Muraoka O. J. Org. Chem. 2015; 80: 9480
    • 15b Noriyuki H, Yoko S, Kohei Y, Chiaki O, Mitsuhiro Y, Teruki Y. Heterocycles 2017; 95: 557
  • 16 Sobenina LN, Tomilin DN, Sagitova EF, Ushakov IA, Trofimov BA. Org. Lett. 2017; 19: 1586