Synlett 2021; 32(01): 01-06
DOI: 10.1055/s-0040-1706420
synpacts
© Georg Thieme Verlag Stuttgart · New York

Revisiting the ‘Phenonium Phenomenon’: Regiodivergent Opening of Nonsymmetrical Phenonium Ions with Halide Nucleophiles

Hannah M. Holst
,
Shelby B. McGuire
,
Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA   Email: nrace@umn.edu
› Author Affiliations
This work was funded by the University of Minnesota and the American Chemical Society Petroleum Research Fund (PRF 60782-DNI1).
Further Information

Publication History

Received: 13 July 2020

Accepted after revision: 20 July 2020

Publication Date:
28 August 2020 (online)


Indicates equal contribution

Abstract

Formation of phenonium ions through anchimeric assistance (neighboring-group participation) of aryl rings has been known since 1949. Although these reactive intermediates have been studied extensively by physical organic chemists, their potential as control elements in synthesis is underutilized. Presented here are our laboratory’s recently reported first examples of regiodivergent openings of nonsymmetrical phenonium ions with chloride nucleophiles. The selectivity of these processes is under reagent control. The reactions are operationally simple and permit the stereospecific synthesis of complex chiral building blocks from readily accessible epoxide starting materials.

1 Introduction

2 Select Examples of Phenonium Ion Methodology

3 Regiodivergent Opening of Nonsymmetrical Phenonium Ions

4 Summary and Outlook

 
  • References

  • 1 Cram DJ. J. Am. Chem. Soc. 1949; 71: 3863
    • 3a Olah GA, Porter RD. J. Am. Chem. Soc. 1971; 93: 6877
    • 3b Olah GA, Head NJ, Rasul G, Prakash GK. S. J. Am. Chem. Soc. 1995; 117: 875
  • 4 del Río E, Menéndez MI, López R, Sordo TL. J. Phys. Chem. A 2000; 104: 5568
    • 5a Saunders WH. Jr, Paine RH. J. Am. Chem. Soc. 1961; 83: 882
    • 5b Cram DJ, Thompson JA. J. Am. Chem. Soc. 1967; 89: 6766
    • 5c Harris JM, Schadt FL, Schleyer P. vonR, Lancelot CJ. J. Am. Chem. Soc. 1969; 91: 7508
    • 5d Tsuji Y, Richard JP. Can. J. Chem. 2014; 93: 428
    • 6a Nagumo S, Furukawa T, Ono M, Akita H. Tetrahedron Lett. 1997; 38: 2849
    • 6b Nagumo S, Ishii Y, Kakimoto Y.-i, Kawahara N. Tetrahedron Lett. 2002; 43: 5333
    • 6c Nagumo S, Ono M, Kakimoto Y.-i, Furukawa T, Hisano T, Mizukami M, Kawahara N, Akita H. J. Org. Chem. 2002; 67: 6618
    • 6d Li X, Li C, Zhang W, Lu X, Han S, Hong R. Org. Lett. 2010; 12: 1696
    • 6e Li J, Bauer A, Di Mauro G, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 9816
    • 7a Fagnoni M, Albini A. Acc. Chem. Res. 2005; 38: 713
    • 7b Protti S, Dondi D, Mella M, Fagnoni M, Albini A. Eur. J. Org. Chem. 2011; 2011: 3229
    • 8a Ono M, Suzuki K, Akita H. Tetrahedron Lett. 1999; 40: 8223
    • 8b Ehara T, Yokoyama H, Ono M, Akita H. Heterocycles 2007; 71: 627
  • 9 Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Org. Lett. 2003; 5: 2157
  • 10 Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
  • 11 Kitamura T, Muta K, Oyamada J. J. Org. Chem. 2015; 80: 10431
  • 12 Scheidt F, Neufeld J, Schäfer M, Thiehoff C, Gilmour R. Org. Lett. 2018; 20: 8073
  • 13 Li L, Chen Z, Zhang X, Jia Y. Chem. Rev. 2018; 118: 3752
  • 14 Xu S, Holst HM, McGuire SB, Race NJ. J. Am. Chem. Soc. 2020; 142: 8090
  • 15 Crotti P, Ferretti M, Macchia F, Stoppinoni A. J. Org. Chem. 1986; 51: 2759
  • 16 For a representative example, see: Yu M, Snider BB. Org. Lett. 2009; 11: 1031
    • 17a Okamoto Y, Brown HC. J. Org. Chem. 1957; 22: 485
    • 17b Brown HC, Okamoto Y. J. Am. Chem. Soc. 1958; 80: 4979
  • 18 Soumya PR, Kumar P, Pal M. Indian J. Plant Physiol. 2017; 22: 267