Synlett 2020; 31(20): 1962-1966
DOI: 10.1055/s-0040-1706412
synpacts
© Georg Thieme Verlag Stuttgart · New York

Unsymmetrical Heterocycle Cross-Couplings Enabled by Sulfur(IV) Reagents

Min Zhou
,
Jet Tsien
,
Tian Qin
This work was supported by the Robert A. Welch Foundation (Grant I-2010-20190330) and the Eugene McDermott Scholar Endowed Scholarship.
Further Information

Publication History

Received: 06 July 2020

Accepted after revision: 13 July 2020

Publication Date:
14 August 2020 (online)


Abstract

Whereas metal-mediated cross-couplings find broad applications in syntheses of medicines, agrochemicals, and natural products, these powerful transformations have limited utility for Lewis basic substrates (e.g., heteroarenes), wherein basic functionalities coordinate to the metal center, hindering product formation. In this context, we have developed a transition-metal-free cross-coupling reaction mediated by sulfur(IV). This method leverages the ability of simple alkyl sulfinyl(IV) chlorides to form bipyramidal sulfurane complexes to drive a pseudo ‘reductive elimination’ process from the hypervalent sulfur atom, thereby readily providing unsymmetrical biheteroarenes.

1 Introduction

2 Historical Sulfurane(IV)-Mediated Couplings

3 Unsymmetrical Heterocycle Cross-Couplings

4 Conclusion

 
  • References

  • 1 Bolm C, Beller M. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed. Wiley-VCH; Weinheim: 2004
  • 2 Hartwig J. Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books; Mill Valley: 2010
  • 3 Zhou M, Tsien J, Qin T. Angew. Chem. Int. Ed. 2020; 59: 7372
  • 4 Oae S, Furukawa N. Adv. Heterocycl. Chem. 1990; 48: 1
  • 5 Li JK. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, 5th ed. Springer; Berlin: 2014: 379

    • For ligand-exchange examples involving hypervalent sulfur, see:
    • 6a Ackerman BK, Andersen KK, Karup-Nielsen I, Peynircioglu NB, Yeager SA. J. Org. Chem. 1974; 39: 964
    • 6b Furukawa N, Shibutani T, Matsumura K, Fujihara H, Oae S. Tetrahedron Lett. 1986; 27: 3899
  • 7 Gilman H, Swayampati DR. J. Am. Chem. Soc. 1955; 77: 3387
  • 8 Franzen V, Mertz C. Justus Liebigs Ann. Chem. 1961; 643: 24
  • 9 Trost BM, Schinski WL, Mantz IB. J. Am. Chem. Soc. 1969; 91: 4320
  • 10 Andersen KK, Yeager SA, Peynircioglu NB. Tetrahedron Lett. 1970; 11: 2485
  • 11 Sheppard WA. J. Am. Chem. Soc. 1971; 93: 5597
  • 12 Young PR, Hsieh L.-S. J. Am. Chem. Soc. 1978; 100: 7121
  • 13 Oae S, Yoshimura T, Furukawa N. Bull. Chem. Soc. Jpn. 1972; 45: 2019

    • For benzylpyridine syntheses, see:
    • 14a Oae S, Kawai T, Furukawa N. Tetrahedron Lett. 1984; 25: 69
    • 14b Oae S, Kawai T, Furukawa N, Iwasaki F. J. Chem. Soc., Perkin Trans. 2 1987; 405
    • 14c Wakabayashi S, Ishida M, Takeda T, Oae S. Tetrahedron Lett. 1988; 29: 4441

    • For phenyl pyridine synthesis, see:
    • 14d Oae S, Kawai T, Furukawa N. Phosphorus Sulfur Relat. Elem. 1987; 34: 123

    • For bipyridine syntheses, see:
    • 14e Furukawa N, Shibutani T, Fujihara H. Tetrahedron Lett. 1987; 28: 5845

    • For allylpyridine and styrylpyridine syntheses, see:
    • 14f Oae S, Takeda T, Wakabayashi S. Tetrahedron Lett. 1988; 29: 4445

    • For pyridine homocouplings, see:
    • 14g Oae S, Kawai T, Furukawa N. Tetrahedron Lett. 1984; 25: 2549
  • 15 Young PR, Ruekberg BP. J. Mol. Struct. THEOCHEM 1989; 186: 85
  • 16 Moc J, Dorigo AE, Morokuma K. Chem. Phys. Lett. 1993; 204: 65
  • 17 Oae S, Inubushi Y, Yoshihara M. Phosphorus, Sulfur Silicon Relat. Elem. 1995; 103: 101
  • 18 Christensen PR, Patrick BO, Caron É, Wolf MO. Angew. Chem. Int. Ed. 2013; 52: 12946
  • 19 Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
  • 20 Dean WM, Šiaučiulis M, Storr T, Lewis W, Stockman RA. Angew. Chem. Int. Ed. 2016; 55: 10013
  • 21 Šiaučiulis M, Ahlsten N, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 8779
  • 22 Chen D.-L, Sun Y, Chen M, Li X, Zhang L, Huang X, Bai Y, Luo F, Peng B. Org. Lett. 2019; 21: 3986
  • 23 Youn J.-H, Herrmann R. Tetrahedron Lett. 1986; 27: 1493
    • 24a Cox PA, Reid M, Leach AG, Campbell AD, King EJ, Lloyd-Jones GC. J. Am. Chem. Soc. 2017; 139: 13156
    • 24b Cox PA, Leach AG, Campbell AD, Lloyd-Jones GC. J. Am. Chem. Soc. 2016; 138: 9145
  • 25 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
  • 26 Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958

    • For the discovery route, see:
    • 27a Schader SM, Colby-Germinario SP, Quashie PK, Oliveira M, Ibanescu R.-I, Moisi D, Mespléde T, Wainberg MA. Antimicrob. Agents Chemother. 2012; 56: 4527
    • 27b Wang T, Kadow JF, Meanwell NA, Yeung K.-S, Zhang Z, Yin Z, Qui Z, Deon DH, James CA, Ruediger EH, Bachband C. US 7915283B2, 2011

    • For a process-scale reaction, see:
    • 27c Pikul S, Cheng H, Cheng A, Huang CD, Ke A, Kuo L, Thompson A, Wilder S. Org. Process Res. Dev. 2013; 17: 907