Synthesis 2021; 53(10): 1785-1794
DOI: 10.1055/s-0040-1706194
paper

Stereochemical Control of Tricoordinate Copper(I) Complexes Based on N-(9-Alkyl-9-fluorenyl)-Substituted Heterocyclic Carbenes

Hamze Almallah
a  Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg cedex, France
,
Eric Brenner
a  Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg cedex, France
,
Dominique Matt
a  Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg cedex, France
,
Christophe Gourlaouen
b  Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
,
Muriel Hissler
c  Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Groupe ‘Phosphore et Matériaux Moléculaires’, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
› Author Affiliations
H. A. acknowledges the Association de spécialisation et d’orientation scientifique (Lebanon) for financial support.


Abstract

A series of tricoordinate copper(I) complexes of general formula [Cu(Et F-NHC)(2,2′-dipyridylamine)][BF4], in which Et F-NHC represents an imidazol-2-ylidene ligand bearing a 9-ethyl-9-fluorenyl N-substituent have been synthesised stepwise from appropriate N-arylimidazoles. All complexes are remarkably air-stable, both in solution and in the solid state. X-ray diffraction studies revealed that in three of the complexes the fluorenylidene plane and the dipyridylamine (dpa) unit undergo intramolecular π–π stacking. The resulting bending of the fluorenilydene plane towards the metal atom is likely to contribute to maintain the trigonal planar geometry of the [Cu–C,N,N] unit upon binding of exogenous substrates, thereby considerably increasing complex stability.

Supporting Information



Publication History

Received: 03 February 2021

Accepted after revision: 16 March 2021

Publication Date:
06 April 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
  • 2 Arduengo AJ, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
  • 3 Herrmann WA, Köcher C. Angew. Chem. Int. Ed. 1997; 36: 2162
  • 4 Hermann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
  • 5 Kantchev EA. B, O’Brien CJ, Organ MG. Angew. Chem. Int. Ed. 2007; 46: 2768
  • 6 Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
  • 7 Downing SP, Pogorzelec PJ, Danopoulos AA, Cole-Hamilton DJ. Eur. J. Inorg. Chem. 2009; 1816
  • 8 N-Heterocyclic Carbenes in Synthesis . Nolan SP. Wiley-VCH; Weinheim: 2006
  • 9 Nelson DJ, Nolan SP. Chem. Soc. Rev. 2013; 42: 6723
  • 10 Valente C, Pompeo M, Sayah M, Organ MG. Org. Process Res. Dev. 2014; 18: 180
  • 11 Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 5463
  • 12 Froese RD. J, Lombardi C, Pompeo M, Rucker RP, Organ MG. Acc. Chem. Res. 2017; 50: 2244
  • 13 N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis. Cazin SJ. Springer Verlag; Berlin: 2011
  • 14 Teci M, Brenner E, Matt D, Toupet L. Eur. J. Inorg. Chem. 2013; 2841
  • 15 Teci M, Brenner E, Matt D, Gourlaouen C, Toupet L. Dalton Trans. 2014; 43: 12251
  • 16 Teci M, Brenner E, Matt D, Toupet L. Z. Kristallogr. New Cryst. Struct. 2014; 229: 169
  • 17 Teci M, Brenner E, Matt D, Gourlaouen C, Toupet L. Chem. Eur. J. 2015; 21: 10997
  • 18 Teci M, Brenner E, Matt D, Gourlaouen C, Toupet L. Dalton Trans. 2015; 44: 9260
  • 19 Teci M, Lentz N, Brenner E, Matt D, Toupet L. Dalton Trans. 2015; 44: 13991
  • 20 Teci M, Hueber D, Pale P, Toupet L, Blanc A, Brenner E, Matt D. Chem. Eur. J. 2017; 23: 7809
  • 21 Krylova VA, Djurovich PI, Whited MT, Thompson ME. Chem. Commun. 2010; 46: 6696
  • 22 Krylova VA, Djurovich PI, Aronson JW, Haiges R, Whited MT, Thompson ME. Organometallics 2012; 31: 7983
  • 23 Marion R, Sguerra F, Di Meo F, Sauvageot E, Lohier JF, Daniellou R, Renaud JL, Linares M, Hamel M, Gaillard S. Inorg. Chem. 2014; 53: 9181
  • 24 Elie M, Sguerra F, Di Meo F, Weber MD, Marion R, Grimault A, Lohier JF, Stallivieri A, Brosseau A, Pansu RB, Renaud JL, Linares M, Hamel M, Costa RD, Gaillard S. ACS Appl. Mater. Interfaces 2016; 8: 14678
  • 25 Hamze R, Peltier JL, Sylvinson D, Jung M, Cardenas J, Haiges R, Soleilhavoup M, Jazzar R, Djurovich PI, Bertrand G, Thompson ME. Science 2019; 363: 601
  • 26 Nicholls TP, Bissember AC. Tetrahedron Lett. 2019; 60: 150883
  • 27 Barluenga J, López LA, Löber O, Tomás M, García-Granda S, Alvarez-Rúa C, Borge J. Angew. Chem. Int. Ed. 2001; 40: 3392
  • 28 Tan GW, Zhu HP. Inorg. Chem. 2011; 50: 6979
  • 29 Lan JB, Chen L, Yu XQ, You JS, Xie RG. Chem. Commun. 2004; 188
  • 30 Chu Y, Deng H, Cheng JP. J. Org. Chem. 2007; 72: 7790
  • 31 Almallah H, Brenner E, Matt D, Harrowfield J, Jahjah M, Hijazi A. Dalton Trans. 2019; 48: 14516
  • 32 Jurkauskas V, Sadighi JP, Buchwald SL. Org. Lett. 2003; 5: 2417
  • 33 CCDC 1960780 (1a) 1960784 (1c) and 1960785 (1e) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 34 Sheldrick GM. Acta Crystallogr., Sect A 2015; 71: 3
  • 35 Sheldrick GM. Acta Crystallogr., Sect C 2015; 71: 3
  • 36 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01 . Gaussian, Inc; Wallingford CT: 2009
  • 37 Becke AD. J. Chem. Phy. 1993; 98: 5648
  • 38 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
  • 39 Petersson GA, Bennett A, Tensfeldt TG, Allaham MA, Shirley WA, Mantzaris J. J. Chem. Phys. 1988; 89: 2193
  • 40 Fuentealba P, Preuss H, Stoll H, Vonszentpaly L. Chem. Phys. Lett. 1982; 89: 418
  • 41 Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang WT. J. Chem. Theory Comput. 2011; 7: 625