Synlett 2020; 31(20): 2043-2045
DOI: 10.1055/s-0040-1706068
letter

Aerobic Oxidation of Phosphite Esters to Phosphate Esters by Using an Ionic-Liquid-Supported Organotelluride Reusable Catalyst

Aya Mihoya
a   Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa259-1292, Japan   Email: koguchi@tokai-u.jp
,
Yuga Shibuya
a   Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa259-1292, Japan   Email: koguchi@tokai-u.jp
,
Akane Ito
a   Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa259-1292, Japan   Email: koguchi@tokai-u.jp
,
Anna Toyoda
a   Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa259-1292, Japan   Email: koguchi@tokai-u.jp
,
Makoto Oba
b   Graduate School of Science and Technology, Tokai University, 3-20-1 Orido, Shimizu-ku, Shizuoka 424-8610, Japan
,
Shinichi Koguchi
a   Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa259-1292, Japan   Email: koguchi@tokai-u.jp
› Author Affiliations


Abstract

We describe the synthesis of an ionic-liquid (IL)-supported organotelluride catalyst and its application as a recyclable catalyst for the aerobic oxidation of phosphite esters to phosphate esters. This method shows high conversion rates, allows the ready isolation and purification of the resulting products, and exhibits good reusability of the catalyst.

Supporting Information



Publication History

Received: 31 August 2020

Accepted after revision: 20 September 2020

Article published online:
16 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Mukaiyama T, Mitunobu O, Obata T. J. Org. Chem. 1965; 30: 101
  • 2 Motoshima K, Sato A, Yorimitu H, Oshima K. Bull. Chem. Soc. Jpn. 2007; 80: 2229
    • 3a Marino MP, Placek DC. In Synthetic Lubricants and High-Performance Functional Fluids, 2nd ed. Rudnick LR, Shubkin RL. Marcel Decker; New York: 1999. DOI: Chap. 3, 103
    • 3b Moy P. J. Vinyl Addit. Technol. 2004; 10: 187
    • 3c Barr DB, Bravo R, Weerasekera G, Caltabiano LM, Whitehead RD. Jr, Olsson AO, Caudill SP, Schober SE, Pirkle JL, Sampson RJ, Needham LL. Environ. Health Perspect. 2004; 112: 186
    • 3d Oldenhoveda de Guertechin L. In Handbook of Detergents, Part A: Properties . Broze G. Marcel Dekker; New York: 1999. DOI: Chap. 2, 18
  • 4 Okada Y, Oba M, Arai A, Tanaka K, Nishiyama K, Ando W. Inorg. Chem. 2010; 49: 383
  • 5 Oba M, Tanaka K, Nishiyama K, Ando W. J. Org. Chem. 2011; 76: 4173
  • 6 Oba M, Okada Y, Nishiyama K, Shimada S, Ando W. Chem. Commun. 2008; 5378
  • 7 Oba M, Okada Y, Nishiyama K, Ando W. Org. Lett. 2009; 11: 1879
  • 9 Mihoya A, Koguchi S, Shibuya Y, Mimura M, Oba M. Catalysts 2020; 10: 398
  • 10 Triphenyl Phosphate (Table [2], Entry 1); Typical Procedure A solution of (PhO)3P (0.0773 g, 0.250 mmol) in (bmim)[PF6] (5 mL) containing 5 (0.0330 g, 0.0500 mmol) and rose bengal (0.0128 g, 0.0125 mmol) was vigorously stirred in an open flask and irradiated with a 60 W LED lamp for 2.5 h. The temperature was kept at about 15 °C by using an ice bath during the irradiation. The resulting mixture was extracted with Et2O, and the solvent was then evaporated to give a pink solid; yield: 0.0803 g (99%); mp 44–47 °C.1H NMR (500 MHz, CDCl3): δ = 7.36 (t, J = 7.7, 6 H), 7.25–7.19 (m, 9 H). 13C NMR (125 MHz, CDCl3): δ = 150.6, 150.5, 130.0, 125.7, 120.3, 120.2. 31P NMR (202 MHz, CDCl3): δ = –17.7. HRMS (APCI): m/z [M + H]+ calcd for C18H16O4P: 327.0781; found: 327.0743.