Synthesis 2021; 53(15): 2621-2631
DOI: 10.1055/s-0040-1706032
paper

Reactions of 4-Pyrones with Azomethine Ylides as a Chemo­selective Method for the Construction of Multisubstituted Pyrano[2,3-c]pyrrolidines

a   Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
,
Vyacheslav D. Steben’kov
a   Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
,
Konstantin L. Obydennov
b   Institute of Chemical Engineering, Ural Federal University, 28 Mira str., 620078 Ekaterinburg, Russian Federation
,
Sergey A. Usachev
a   Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
,
Vladimir S. Moshkin
a   Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
,
Vyacheslav Y. Sosnovskikh
a   Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
› Author Affiliations
This work was financially supported by the Russian Science Foundation (grant number 18-13-00186).


Abstract

4-Pyrones bearing electron-donating and electron-withdrawing groups react with nonstabilized azomethine ylides to form pyrano[2,3-c]pyrrolidines in moderate to good yields. The reaction proceeds chemoselectively as a 1,3-dipolar cycloaddition of the azomethine ylide at the carbon–carbon double bond of the pyrone activated by the electron-withdrawing substituent. The reactivity of 4-pyrones toward azomethine ylides was rationalized by computational studies with the use of reactivity indexes. The pyrano[2,3-c]pyrrolidine moiety could be modified, for example by a ring-opening transformation under the action of hydrazine to provide pyrazolyl-substituted pyrrolidines.

Supporting Information



Publication History

Received: 14 February 2021

Accepted after revision: 18 March 2021

Article published online:
13 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Islam MT, Mubarak MS. Adv. Tradit. Med. 2020; 20: 13
    • 1b Li J, Ye Y, Zhang Y. Org. Chem. Front. 2018; 5: 864
    • 2a Chalyk BA, Butko MV, Yanshyna OO, Gavrilenko KS, Druzhenko TV, Mykhailiuk PK. Chem. Eur. J. 2017; 23: 16782
    • 2b Zimnitskiy NS, Barkov AYu, Ulitko MV, Kutyashev IB, Korotaev VY, Sosnovskikh VY. New J. Chem. 2020; 44: 16185
    • 3a Katavic PL, Venables DA, Rali T, Carroll AR. J. Nat. Prod. 2007; 70: 872
    • 3b Mizutani S, Komori K, Taniguchi T, Monde K, Kuramochi K, Tsubaki K. Angew. Chem. Int. Ed. 2016; 55: 9553
    • 3c Yang J, Wearing XZ, Le Quesne PW, Deschamps JR, Cook JM. J. Nat. Prod. 2008; 71: 1431
    • 3d Ma D, Zhao C, Li H, Qi J, Zhang L, Xu S, Xie X, She X. Chem. Asian J. 2013; 8: 364
    • 4a Kutyashev IB, Ulitko MV, Barkov AY, Zimnitskiy NS, Korotaev VY, Sosnovskikh VY. New J. Chem. 2019; 43: 18495
    • 4b Parmar NJ, Pansuriya BR, Barad HA, Kant R, Gupta VK. Bioorg. Med. Chem. Lett. 2012; 22: 4075
    • 5a Tang S, Zhang X, Sun J, Niu D, Chruma JJ. Chem. Rev. 2018; 118: 10393
    • 5b Meyer AG, Ryan JH. Molecules 2016; 21: 935
    • 5c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 5d Zhang X, Qiu W, Evans J, Kaur M, Jasinski JP, Zhang W. Org. Lett. 2019; 21: 2176
    • 5e Otero-Fraga J, Suárez-Pantiga S, Montesinos-Magraner M, Rhein D, Mendoza A. Angew. Chem. Int. Ed. 2017; 56: 12962
    • 5f Suárez-Pantiga S, Colas K, Johansson MJ, Mendoza A. Angew. Chem. Int. Ed. 2015; 54: 14094
    • 6a Liang X, Ye W, Thor W, Sun L, Wang B, He S, Cheng Y.-K, Lee C.-S. Org. Chem. Front. 2020; 7: 840
    • 6b Usachev SA, Popova NV, Moshkin VS, Sosnovskikh VY. Chem. Heterocycl. Compd. 2015; 51: 913
    • 6c Manneveau M, Tanii S, Gens F, Legros J, Chataigner I. Org. Biomol. Chem. 2020; 18: 3481
    • 6d Bastrakov MA, Fedorenko AK, Starosotnikov AM, Kachala VV, Shevelev SA. Chem. Heterocycl. Compd. 2019; 55: 72
    • 7a Sosnovskikh VY, Kornev MY, Moshkin VS, Buev EM. Tetrahedron 2014; 70: 9253
    • 7b Yue J, Chen S, Zuo X, Liu X.-L, Xu S.-W, Zhou Y. Tetrahedron Lett. 2019; 60: 137
    • 7c Kesava-Reddy N, Golz C, Strohmann C, Kumar K. Chem. Eur. J. 2016; 22: 18373
  • 8 Rudas M, Fejes I, Nyerges M, Szöllõsy Á, Tõke L, Groundwater PW. J. Chem. Soc., Perkin Trans. 1 1999; 1167
    • 9a Obydennov DL, Khammatova LR, Eltsov OS, Sosnovskikh VY. Org. Biomol. Chem. 2018; 16: 1692
    • 9b Obydennov DL, Khammatova LR, Steben’kov VD, Sosnovskikh VY. RSC Adv. 2019; 9: 40072
    • 9c Obydennov DL, Usachev BI, Sosnovskikh VY. Chem. Heterocycl. Compd. 2015; 50: 1388
    • 9d Obydennov DL, Sosnovskikh VY. Chem. Heterocycl. Compd. 2015; 51: 281
    • 9e Obydennov DL, Suslova AI, Sosnovskikh VY. Chem. Heterocycl. Compd. 2020; 56: 173
    • 10a Gerlach EM, Korkmaz MA, Pavlinov I, Gao Q, Aldrich LN. ACS Chem. Biol. 2019; 14: 1536
    • 10b McCombie SW, Metz WA, Nazareno D, Shankar BB, Tagat J. J. Org. Chem. 1991; 56: 4963
  • 11 Buev EM, Moshkin VS, Sosnovskikh VY. J. Org. Chem. 2017; 82: 12827
  • 12 Lian Z, Zhao Q.-Y, Wei Y, Shi M. Eur. J. Org. Chem. 2012; 3338
    • 13a Domingo LR, Ríos-Gutiérrez M, Pérez P. Molecules 2016; 21: 748
    • 13b Ma Y, Liang J, Zhao D, Chen Y.-L, Shen J, Xiong B. RSC Adv. 2014; 4: 17262
    • 14a Obydennov DL, Simbirtseva AE, Piksin SE, Sosnovskikh VY. ACS Omega 2020; 5: 33406
    • 14b Honma Y, Sekine Y, Hashiyama T, Takeda M, Ono Y, Tsuzurahara K. Chem. Pharm. Bull. 1982; 30: 4314
    • 14c Attenburrow J, Elks J, Elliott DF, Hems BA, Harris JO, Brodrick CI. J. Chem. Soc. 1945; 571
  • 15 Schrödinger Release 2019-2: MacroModel. Schrödinger LLC; New York: 2019
  • 16 Mohamadi F, Richards NG. J, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC. J. Comput. Chem. 1990; 11: 440
  • 17 Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA. Int. J. Quantum Chem. 2013; 113: 2110
  • 18 Coffin A, Ready JM. Org. Lett. 2019; 21: 648