Eur J Pediatr Surg 2019; 29(04): 317-327
DOI: 10.1055/s-0039-1693993
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Congenital Diaphragmatic Hernia: State of the Art in Translating Experimental Research to the Bedside

Lina Antounians
1   Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
2   Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Rebeca Lopes Figueira
3   Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
,
Lourenço Sbragia
3   Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
,
Augusto Zani
1   Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
2   Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
› Author Affiliations
Funding This work was supported by the Canadian Institute of Health Research (CIHR)-SickKids Foundation New Investigator Research Grant (NI18–1270R).
Further Information

Publication History

23 June 2019

25 June 2019

Publication Date:
31 July 2019 (online)

Abstract

Congenital diaphragmatic hernia (CDH) is a devastating disease that still carries a high mortality and morbidity rate. Poor outcomes for fetuses and infants with CDH are mainly related to pulmonary hypoplasia (PH) and pulmonary vascular remodeling that leads to pulmonary hypertension (PHTN). Over the last five decades, research efforts have focused on modeling CDH not only to study the pathophysiology of the diaphragmatic defect, pulmonary hypoplasia, and pulmonary hypertension, but also to identify therapies that would promote lung growth and maturation, and correct vascular remodeling. As CDH is a multifactorial condition whose etiology remains unknown, there is not a single model of CDH, rather several ones that replicate different aspects of this disease. While small animals like the mouse and the rat have mainly been used to uncover biological pathways underlying the diaphragmatic defect and poor lung growth, larger animals like the lamb and the rabbit models have been instrumental for pursuing medical and surgical interventions. Overall, the use of animal models has indeed advanced our knowledge on CDH and helped us test innovative therapeutic options. For example, the lamb model of CDH has been the paradigm for testing fetal surgical procedures, including tracheal occlusion, which has been translated to clinical use. In this review, we outline the induction protocols of CDH in animals with the use of chemicals, dietary changes, genetic alterations, and surgical maneuvers, and we describe the studies that have translated experimental results to the bedside.

 
  • References

  • 1 Colvin J, Bower C, Dickinson JE, Sokol J. Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics 2005; 116 (03) e356-e363
  • 2 Puligandla PS, Skarsgard ED. The Canadian Pediatric Surgery Network congenital diaphragmatic hernia evidence review project: developing national guidelines for care. Paediatr Child Health 2016; 21 (04) 183-186
  • 3 Skarsgard ED, Harrison MR. Congenital diaphragmatic hernia: the surgeon's perspective. Pediatr Rev 1999; 20 (10) e71-e78
  • 4 Montalva L, Raffler G, Riccio A, Lauriti G, Zani A. Neurodevelopmental impairment in children with congenital diaphragmatic hernia: not an uncommon complication for survivors. J Pediatr Surg 2019; DOI: 10.1016/j.jpedsurg.2019.05.021.
  • 5 Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling. Pediatr Res 2019; 85 (06) 754-768
  • 6 Lewin G, Hurtt ME. Pre- and postnatal lung development: an updated species comparison. Birth Defects Res 2017; 109 (19) 1519-1539
  • 7 Schittny JC. Development of the lung. Cell Tissue Res 2017; 367 (03) 427-444
  • 8 Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development 2014; 141 (03) 502-513
  • 9 Costa RH, Kalinichenko VV, Lim L. Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 2001; 280 (05) L823-L838
  • 10 Burri PH, Moschopulos M. Structural analysis of fetal rat lung development. Anat Rec 1992; 234 (03) 399-418
  • 11 Bryden MM, Evans H, Binns W. Embryology of the sheep. 3. The respiratory system, mesenteries and celom in the fourteen to thirty-four day embryo. Anat Rec 1973; 175 (04) 725-735
  • 12 Alcorn DG, Adamson TM, Maloney JE, Robinson PM. A morphologic and morphometric analysis of fetal lung development in the sheep. Anat Rec 1981; 201 (04) 655-667
  • 13 Putnam AR, Willis MD, Binning LK, Boldt PF. Exposure of pesticide applicators to nitrofen: influence of formulation, handling systems, and protective garments. J Agric Food Chem 1983; 31 (03) 645-650
  • 14 Kimbrough RD, Gaines TB, Linder RE. 2,4-Dichlorophenyl-p-nitrophenyl ether (TOK): effects on the lung maturation of rat fetus. Arch Environ Health 1974; 28 (06) 316-320
  • 15 Nakao Y, Ueki R. Congenital diaphragmatic hernia induced by nitrofen in mice and rats: characteristics as animal model and pathogenetic relationship between diaphragmatic hernia and lung hypoplasia. Congenit Anom 1987; 27: 397-417
  • 16 Leinwand MJ, Tefft JD, Zhao J, Coleman C, Anderson KD, Warburton D. Nitrofen inhibition of pulmonary growth and development occurs in the early embryonic mouse. J Pediatr Surg 2002; 37 (09) 1263-1268
  • 17 Montalva L, Zani A. Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr Surg Int 2019; 35 (01) 41-61
  • 18 Snoek KG, Reiss IK, Greenough A. , et al; CDH EURO Consortium. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO Consortium Consensus - 2015 Update. Neonatology 2016; 110 (01) 66-74
  • 19 Montalva L, Lauriti G, Zani A. Congenital heart disease associated with congenital diaphragmatic hernia: a systematic review on incidence, prenatal diagnosis, management, and outcome. J Pediatr Surg 2019; 54 (05) 909-919
  • 20 Iritani I. Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat Embryol (Berl) 1984; 169 (02) 133-139
  • 21 Keijzer R, Liu J, Deimling J, Tibboel D, Post M. Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. Am J Pathol 2000; 156 (04) 1299-1306
  • 22 Vukcevic Z, Coppola CP, Hults C, Gosche JR. Nitrovasodilator responses in pulmonary arterioles from rats with nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 2005; 40 (11) 1706-1711
  • 23 Eastwood MP, Russo FM, Toelen J, Deprest J. Medical interventions to reverse pulmonary hypoplasia in the animal model of congenital diaphragmatic hernia: a systematic review. Pediatr Pulmonol 2015; 50 (08) 820-838
  • 24 Burgos CM, Pearson EG, Davey M. , et al. Improved pulmonary function in the nitrofen model of congenital diaphragmatic hernia following prenatal maternal dexamethasone and/or sildenafil. Pediatr Res 2016; 80 (04) 577-585
  • 25 Okolo FC, Zhang G, Rhodes J, Potoka DA. Intra-amniotic sildenafil treatment modulates vascular smooth muscle cell phenotype in the nitrofen model of congenital diaphragmatic hernia. Sci Rep 2018; 8 (01) 17668
  • 26 Kashyap A, DeKoninck P, Crossley K. , et al. Antenatal medical therapies to improve lung development in congenital diaphragmatic hernia. Am J Perinatol 2018; 35 (09) 823-836
  • 27 Kluth D, Tenbrinck R, von Ekesparre M. , et al. The natural history of congenital diaphragmatic hernia and pulmonary hypoplasia in the embryo. J Pediatr Surg 1993; 28 (03) 456-462
  • 28 Greer JJ, Cote D, Allan DW. , et al. Structure of the primordial diaphragm and defects associated with nitrofen-induced CDH. J Appl Physiol (1985) 2000; 89 (06) 2123-2129
  • 29 Kluth D, Kangah R, Reich P, Tenbrinck R, Tibboel D, Lambrecht W. Nitrofen-induced diaphragmatic hernias in rats: an animal model. J Pediatr Surg 1990; 25 (08) 850-854
  • 30 Pederiva F, Ghionzoli M, Pierro A, De Coppi P, Tovar JA. Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant 2013; 22 (09) 1683-1694
  • 31 Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM. Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg 2014; 49 (06) 859-864
  • 32 Tzanetakis A, Antounians L, Belfiore A. , et al. Endoplasmic reticulum stress response is activated in pulmonary hypoplasia secondary to congenital diaphragmatic hernia, but is decreased by administration of amniotic fluid stem cells. Pediatr Surg Int 2019; 35 (01) 63-69
  • 33 Yuniartha R, Alatas FS, Nagata K. , et al. Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 2014; 30 (09) 907-914
  • 34 Taleporos P, Salgo MP, Oster G. Teratogenic action of bis(dichloroacetyl)diamine on rats: patterns of malformations produced in high incidence at time-limited periods of development. Teratology 1978; 18 (01) 5-15
  • 35 Tasaka H, Takenaka H, Okamoto N, Koga Y, Hamada M. Diaphragmatic hernia induced in rat fetuses by administration of bisdiamine. Congenit Anom 1992; 32: 347-355
  • 36 Chen Y, Zhu JY, Hong KH. , et al. Structural basis of ALDH1A2 inhibition by irreversible and reversible small molecule inhibitors. ACS Chem Biol 2018; 13 (03) 582-590
  • 37 Hashimoto R. Congenital diaphragmatic hernia: experimental approach. Congenit Anom 1999; 39: 75-87
  • 38 Mey J, Babiuk RP, Clugston R, Zhang W, Greer JJ. Retinal dehydrogenase-2 is inhibited by compounds that induce congenital diaphragmatic hernias in rodents. Am J Pathol 2003; 162 (02) 673-679
  • 39 Grzenda A, Shannon J, Fisher J, Arkovitz MS. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia. Dis Model Mech 2013; 6 (01) 106-114
  • 40 Shue E, Wu J, Schecter S, Miniati D. Aberrant pulmonary lymphatic development in the nitrofen mouse model of congenital diaphragmatic hernia. J Pediatr Surg 2013; 48 (06) 1198-1204
  • 41 Nguyen TM, Jimenez J, Rendin LE. , et al. The proportion of alveolar type 1 cells decreases in murine hypoplastic congenital diaphragmatic hernia lungs. PLoS One 2019; 14 (04) e0214793
  • 42 Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat 1953; 92 (02) 189-217
  • 43 Malpel S, Mendelsohn C, Cardoso WV. Regulation of retinoic acid signaling during lung morphogenesis. Development 2000; 127 (14) 3057-3067
  • 44 Major D, Cadenas M, Fournier L, Leclerc S, Lefebvre M, Cloutier R. Retinol status of newborn infants with congenital diaphragmatic hernia. Pediatr Surg Int 1998; 13 (08) 547-549
  • 45 Beurskens LW, Tibboel D, Lindemans J. , et al. Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 2010; 126 (04) 712-720
  • 46 Cipollone D, Cozzi DA, Businaro R, Marino B. Congenital diaphragmatic hernia after exposure to a triple retinoic acid antagonist during pregnancy. J Cardiovasc Med (Hagerstown) 2017; 18 (05) 389-392
  • 47 Sutherland MF, Parkinson MM, Hallett P. Teratogenicity of three substituted 4-biphenyls in the rat as a result of the chemical breakdown and possible metabolism of a thromboxane A2-receptor blocker. Teratology 1989; 39 (06) 537-545
  • 48 Solomon HM, Wier PJ, Johnson CM, Posobiec LM, Rendemonti JE, Rumberger DF. Benzofuranyl ureas with potent cardiovascular teratogenicity in rats. Teratology 2000; 61 (03) 211-221
  • 49 Montedonico S, Nakazawa N, Puri P. Congenital diaphragmatic hernia and retinoids: searching for an etiology. Pediatr Surg Int 2008; 24 (07) 755-761
  • 50 Greer JJ. Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Respir Physiol Neurobiol 2013; 189 (02) 232-240
  • 51 Montedonico S, Nakazawa N, Puri P. Retinoic acid rescues lung hypoplasia in nitrofen-induced hypoplastic foetal rat lung explants. Pediatr Surg Int 2006; 22 (01) 2-8
  • 52 Sugimoto K, Takayasu H, Nakazawa N, Montedonico S, Puri P. Prenatal treatment with retinoic acid accelerates type 1 alveolar cell proliferation of the hypoplastic lung in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2008; 43 (02) 367-372
  • 53 Montedonico S, Sugimoto K, Felle P, Bannigan J, Puri P. Prenatal treatment with retinoic acid promotes pulmonary alveologenesis in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2008; 43 (03) 500-507
  • 54 Ruttenstock E, Doi T, Dingemann J, Puri P. Prenatal administration of retinoic acid upregulates insulin-like growth factor receptors in the nitrofen-induced hypoplastic lung. Birth Defects Res B Dev Reprod Toxicol 2011; 92 (02) 148-151
  • 55 Doi T, Sugimoto K, Ruttenstock E, Dingemann J, Puri P. Prenatal treatment with retinoic acid activates parathyroid hormone-related protein signaling in the nitrofen-induced hypoplastic lung. Pediatr Surg Int 2011; 27 (01) 47-52
  • 56 Collins MD, Mao GE. Teratology of retinoids. Annu Rev Pharmacol Toxicol 1999; 39: 399-430
  • 57 Finnell RH, Waes JG, Eudy JD, Rosenquist TH. Molecular basis of environmentally induced birth defects. Annu Rev Pharmacol Toxicol 2002; 42: 181-208
  • 58 Lee LM, Leung CY, Tang WW. , et al. A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A 2012; 109 (34) 13668-13673
  • 59 Kardon G, Ackerman KG, McCulley DJ. , et al. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10 (08) 955-970
  • 60 Russell MK, Longoni M, Wells J. , et al. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes. Proc Natl Acad Sci U S A 2012; 109 (08) 2978-2983
  • 61 Yu L, Sawle AD, Wynn J. , et al. Increased burden of de novo predicted deleterious variants in complex congenital diaphragmatic hernia. Hum Mol Genet 2015; 24 (16) 4764-4773
  • 62 Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE. ; Mouse Genome Database Group. Mouse genome database (MGD) 2019. Nucleic Acids Res 2019; 47 (D1): D801-D806
  • 63 Yuan W, Rao Y, Babiuk RP, Greer JJ, Wu JY, Ornitz DM. A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3. Proc Natl Acad Sci U S A 2003; 100 (09) 5217-5222
  • 64 You LR, Takamoto N, Yu CT. , et al. Mouse lacking COUP-TFII as an animal model of Bochdalek-type congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2005; 102 (45) 16351-16356
  • 65 Beck TF, Veenma D, Shchelochkov OA. , et al. Deficiency of FRAS1-related extracellular matrix 1 (FREM1) causes congenital diaphragmatic hernia in humans and mice. Hum Mol Genet 2013; 22 (05) 1026-1038
  • 66 Jay PY, Bielinska M, Erlich JM. , et al. Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol 2007; 301 (02) 602-614
  • 67 Merrell AJ, Ellis BJ, Fox ZD, Lawson JA, Weiss JA, Kardon G. Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias. Nat Genet 2015; 47 (05) 496-504
  • 68 Carmona R, Cañete A, Cano E, Ariza L, Rojas A, Muñoz-Chápuli R. Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice. eLife 2016; 5: e16009
  • 69 Coles GL, Ackerman KG. Kif7 is required for the patterning and differentiation of the diaphragm in a model of syndromic congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2013; 110 (21) E1898-E1905
  • 70 Zhang B, Xiao W, Qiu H. , et al. Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. J Clin Invest 2014; 124 (01) 209-221
  • 71 Bleyl SB, Moshrefi A, Shaw GM. , et al. Candidate genes for congenital diaphragmatic hernia from animal models: sequencing of FOG2 and PDGFRalpha reveals rare variants in diaphragmatic hernia patients. Eur J Hum Genet 2007; 15 (09) 950-958
  • 72 Liu J, Zhang L, Wang D. , et al. Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mech Dev 2003; 120 (09) 1059-1070
  • 73 Wat MJ, Beck TF, Hernández-García A. , et al. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1. Hum Mol Genet 2012; 21 (18) 4115-4125
  • 74 Clugston RD, Klattig J, Englert C. , et al. Teratogen-induced, dietary and genetic models of congenital diaphragmatic hernia share a common mechanism of pathogenesis. Am J Pathol 2006; 169 (05) 1541-1549
  • 75 Ackerman KG, Herron BJ, Vargas SO. , et al. Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet 2005; 1 (01) 58-65
  • 76 Herron BJ, Lu W, Rao C. , et al. Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet 2002; 30 (02) 185-189
  • 77 Roback EW, Barakat AJ, Dev VG, Mbikay M, Chrétien M, Butler MG. An infant with deletion of the distal long arm of chromosome 15 (q26.1----qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet 1991; 38 (01) 74-79
  • 78 Siebler T, Lopaczynski W, Terry CL. , et al. Insulin-like growth factor I receptor expression and function in fibroblasts from two patients with deletion of the distal long arm of chromosome 15. J Clin Endocrinol Metab 1995; 80 (12) 3447-3457
  • 79 Tönnies H, Schulze I, Hennies H, Neumann LM, Keitzer R, Neitzel H. De novo terminal deletion of chromosome 15q26.1 characterised by comparative genomic hybridisation and FISH with locus specific probes. J Med Genet 2001; 38 (09) 617-621
  • 80 Tönnies H. Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med 2002; 8 (06) 246-250
  • 81 Biggio Jr JR, Descartes MD, Carroll AJ, Holt RL. Congenital diaphragmatic hernia: is 15q26.1-26.2 a candidate locus?. Am J Med Genet A 2004; 126A (02) 183-185
  • 82 Klaassens M, van Dooren M, Eussen HJ. , et al. Congenital diaphragmatic hernia and chromosome 15q26: determination of a candidate region by use of fluorescent in situ hybridization and array-based comparative genomic hybridization. Am J Hum Genet 2005; 76 (05) 877-882
  • 83 Veenma DC, de Klein A, Tibboel D. Developmental and genetic aspects of congenital diaphragmatic hernia. Pediatr Pulmonol 2012; 47 (06) 534-545
  • 84 Longoni M, High FA, Qi H. , et al. Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital diaphragmatic hernia. Hum Genet 2017; 136 (06) 679-691
  • 85 Babiuk RP, Greer JJ. Diaphragm defects occur in a CDH hernia model independently of myogenesis and lung formation. Am J Physiol Lung Cell Mol Physiol 2002; 283 (06) L1310-L1314
  • 86 Clugston RD, Greer JJ. Diaphragm development and congenital diaphragmatic hernia. Semin Pediatr Surg 2007; 16 (02) 94-100
  • 87 Sekine K, Ohuchi H, Fujiwara M. , et al. Fgf10 is essential for limb and lung formation. Nat Genet 1999; 21 (01) 138-141
  • 88 Chou AK, Huang SC, Chen SJ. , et al. Unilateral lung agenesis--detrimental roles of surrounding vessels. Pediatr Pulmonol 2007; 42 (03) 242-248
  • 89 Meller CH, Morris RK, Desai T, Kilby MD. Prenatal diagnosis of isolated right pulmonary agenesis using sonography alone: case study and systematic literature review. J Ultrasound Med 2012; 31 (12) 2017-2023
  • 90 Nguyen LN, Parks WT. Bilateral pulmonary agenesis: a rare and unexpected finding in a newborn. AJP Rep 2016; 6 (02) e246-e249
  • 91 High FA, Bhayani P, Wilson JM, Bult CJ, Donahoe PK, Longoni M. De novo frameshift mutation in COUP-TFII (NR2F2) in human congenital diaphragmatic hernia. Am J Med Genet A 2016; 170 (09) 2457-2461
  • 92 Donahoe PK, Longoni M, High FA. Polygenic causes of congenital diaphragmatic hernia produce common lung pathologies. Am J Pathol 2016; 186 (10) 2532-2543
  • 93 Pereira-Terra P, Deprest JA, Kholdebarin R. , et al. Unique tracheal fluid microrna signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann Surg 2015; 262 (06) 1130-1140
  • 94 Herrera-Rivero M, Zhang R, Heilmann-Heimbach S. , et al. Circulating microRNAs are associated with pulmonary hypertension and development of chronic lung disease in congenital diaphragmatic hernia. Sci Rep 2018; 8 (01) 10735
  • 95 Khoshgoo N, Visser R, Falk L. , et al. MicroRNA-200b regulates distal airway development by maintaining epithelial integrity. Sci Rep 2017; 7 (01) 6382
  • 96 Khoshgoo N, Kholdebarin R, Pereira-Terra P. , et al. Prenatal microRNA miR-200b therapy improves nitrofen-induced pulmonary hypoplasia associated with congenital diaphragmatic hernia. Ann Surg 2019; 269 (05) 979-987
  • 97 De Lorimier AA, Tierney DF, Parker HR. Hypoplastic lungs in fetal lambs with surgically produced congenital diaphragmatic hernia. Surgery 1967; 62: 12-17
  • 98 Kent GM, Olley PM, Creighton RE. , et al. Hemodynamic and pulmonary changes following surgical creation of a diaphragmatic hernia in fetal lambs. Surgery 1972; 72 (03) 427-433
  • 99 Haller Jr JA, Signer RD, Golladay ES, Inon AE, Harrington DP, Shermeta DW. Pulmonary and ductal hemodynamics in studies of simulated diaphragmatic hernia of fetal and newborn lambs. J Pediatr Surg 1976; 11 (05) 675-680
  • 100 Harrison MR, Bressack MA, Churg AM, de Lorimier AA. Correction of congenital diaphragmatic hernia in utero. II. Simulated correction permits fetal lung growth with survival at birth. Surgery 1980; 88 (02) 260-268
  • 101 Fox ZD, Jiang G, Ho KKY, Walker KA, Liu AP, Kunisaki SM. Fetal lung transcriptome patterns in an ex vivo compression model of diaphragmatic hernia. J Surg Res 2018; 231: 411-420
  • 102 de Luca U, Cloutier R, Laberge JM. , et al. Pulmonary barotrauma in congenital diaphragmatic hernia: experimental study in lambs. J Pediatr Surg 1987; 22 (04) 311-316
  • 103 Revillon Y, Sidi D, Chourrout Y. , et al. High-frequency ventilation in newborn lambs after intra-uterine creation of diaphragmatic hernia. Eur J Pediatr Surg 1993; 3 (03) 132-138
  • 104 Glick PL, Stannard VA, Leach CL. , et al. Pathophysiology of congenital diaphragmatic hernia II: the fetal lamb CDH model is surfactant deficient. J Pediatr Surg 1992; 27 (03) 382-387
  • 105 O'Toole SJ, Karamanoukian HL, Sharma A. , et al. Surfactant rescue in the fetal lamb model of congenital diaphragmatic hernia. J Pediatr Surg 1996; 31 (08) 1105-1108
  • 106 O'Toole SJ, Karamanoukian HL, Morin III FC. , et al. Surfactant decreases pulmonary vascular resistance and increases pulmonary blood flow in the fetal lamb model of congenital diaphragmatic hernia. J Pediatr Surg 1996; 31 (04) 507-511
  • 107 Cogo PE, Zimmermann LJ, Rosso F. , et al. Surfactant synthesis and kinetics in infants with congenital diaphragmatic hernia. Am J Respir Crit Care Med 2002; 166 (02) 154-158
  • 108 Van Meurs K. ; Congenital Diaphragmatic Hernia Study Group. Is surfactant therapy beneficial in the treatment of the term newborn infant with congenital diaphragmatic hernia?. J Pediatr 2004; 145 (03) 312-316
  • 109 Lewis NA, Holm BA, Rossman J, Swartz D, Glick PL. Late administration of antenatal vitamin A promotes pulmonary structural maturation and improves ventilation in the lamb model of congenital diaphragmatic hernia. Pediatr Surg Int 2011; 27 (02) 119-124
  • 110 Soper RT, Pringle KC, Scofield JC. Creation and repair of diaphragmatic hernia in the fetal lamb: techniques and survival. J Pediatr Surg 1984; 19 (01) 33-40
  • 111 Pringle KC, Turner JW, Schofield JC, Soper RT. Creation and repair of diaphragmatic hernia in the fetal lamb: lung development and morphology. J Pediatr Surg 1984; 19 (02) 131-140
  • 112 Adzick NS, Outwater KM, Harrison MR. , et al. Correction of congenital diaphragmatic hernia in utero. IV. An early gestational fetal lamb model for pulmonary vascular morphometric analysis. J Pediatr Surg 1985; 20 (06) 673-680
  • 113 Harrison MR, Adzick NS, Bullard KM. , et al. Correction of congenital diaphragmatic hernia in utero VII: a prospective trial. J Pediatr Surg 1997; 32 (11) 1637-1642
  • 114 DiFiore JW, Fauza DO, Slavin R, Peters CA, Fackler JC, Wilson JM. Experimental fetal tracheal ligation reverses the structural and physiological effects of pulmonary hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 1994; 29 (02) 248-256
  • 115 Hedrick MH, Estes JM, Sullivan KM. , et al. Plug the lung until it grows (PLUG): a new method to treat congenital diaphragmatic hernia in utero. J Pediatr Surg 1994; 29 (05) 612-617
  • 116 DiFiore JW, Fauza DO, Slavin R, Wilson JM. Experimental fetal tracheal ligation and congenital diaphragmatic hernia: a pulmonary vascular morphometric analysis. J Pediatr Surg 1995; 30 (07) 917-923
  • 117 Skarsgard ED, Meuli M, VanderWall KJ, Bealer JF, Adzick NS, Harrison MR. Fetal endoscopic tracheal occlusion (‘Fetendo-PLUG’) for congenital diaphragmatic hernia. J Pediatr Surg 1996; 31 (10) 1335-1338
  • 118 Benachi A, Dommergues M, Delezoide AL, Bourbon J, Dumez Y, Brunnelle F. Tracheal obstruction in experimental diaphragmatic hernia: an endoscopic approach in the fetal lamb. Prenat Diagn 1997; 17 (07) 629-634
  • 119 Flageole H, Evrard VA, Vandenberghe K, Lerut TE, Deprest JA. Tracheoscopic endotracheal occlusion in the ovine model: technique and pulmonary effects. J Pediatr Surg 1997; 32 (09) 1328-1331
  • 120 Peiro JL, Oria M, Aydin E. , et al. Proteomic profiling of tracheal fluid in an ovine model of congenital diaphragmatic hernia and fetal tracheal occlusion. Am J Physiol Lung Cell Mol Physiol 2018; 315 (06) L1028-L1041
  • 121 Harrison MR, Mychaliska GB, Albanese CT. , et al. Correction of congenital diaphragmatic hernia in utero IX: fetuses with poor prognosis (liver herniation and low lung-to-head ratio) can be saved by fetoscopic temporary tracheal occlusion. J Pediatr Surg 1998; 33 (07) 1017-1022
  • 122 Verla MA, Style CC, Olutoye OO. Prenatal intervention for the management of congenital diaphragmatic hernia. Pediatr Surg Int 2018; 34 (06) 579-587
  • 123 Fauza DO, Marler JJ, Koka R, Forse RA, Mayer JE, Vacanti JP. Fetal tissue engineering: diaphragmatic replacement. J Pediatr Surg 2001; 36 (01) 146-151
  • 124 Fauza DO. Tissue engineering in congenital diaphragmatic hernia. Semin Pediatr Surg 2014; 23 (03) 135-140
  • 125 Ohi R, Suzuki H, Kato T, Kasai M. Development of the lung in fetal rabbits with experimental diaphragmatic hernia. J Pediatr Surg 1976; 11 (06) 955-959
  • 126 Matsuda K, Kato T, Hebiguchi T, Koyama K, Saito M. Histometrical investigation of pulmonary vascular system in experimental diaphragmatic hernia. Keio J Med 1988; 37 (01) 24-36
  • 127 Fauza DO, Tannuri U, Ayoub AA, Capelozzi VL, Saldiva PH, Maksoud JG. Surgically produced congenital diaphragmatic hernia in fetal rabbits. J Pediatr Surg 1994; 29 (07) 882-886
  • 128 Wu J, Yamamoto H, Gratacos E. , et al. Lung development following diaphragmatic hernia in the fetal rabbit. Hum Reprod 2000; 15 (12) 2483-2488
  • 129 Schmidt AF, Rojas-Moscoso JA, Gonçalves FL. , et al. Increased contractility and impaired relaxation of the left pulmonary artery in a rabbit model of congenital diaphragmatic hernia. Pediatr Surg Int 2013; 29 (05) 489-494
  • 130 Manso PH, Figueira RL, Prado CM. , et al. Early neonatal echocardiographic findings in an experimental rabbit model of congenital diaphragmatic hernia. Braz J Med Biol Res 2015; 48 (03) 234-239
  • 131 Wu J, Ge X, Verbeken EK, Gratacós E, Yesildaglar N, Deprest JA. Pulmonary effects of in utero tracheal occlusion are dependent on gestational age in a rabbit model of diaphragmatic hernia. J Pediatr Surg 2002; 37 (01) 11-17
  • 132 Engels AC, Brady PD, Kammoun M. , et al. Pulmonary transcriptome analysis in the surgically induced rabbit model of diaphragmatic hernia treated with fetal tracheal occlusion. Dis Model Mech 2016; 9 (02) 221-228
  • 133 Varisco BM, Sbragia L, Chen J. , et al. Excessive reversal of epidermal growth factor receptor and Ephrin signaling following tracheal occlusion in rabbit model of congenital diaphragmatic hernia. Mol Med 2016; 22: 398-411
  • 134 Roubliova X, Verbeken E, Wu J. , et al. Pulmonary vascular morphology in a fetal rabbit model for congenital diaphragmatic hernia. J Pediatr Surg 2004; 39 (07) 1066-1072
  • 135 Roubliova XI, Verbeken EK, Wu J, Vaast P, Jani J, Deprest JA. Effect of tracheal occlusion on peripheric pulmonary vessel muscularization in a fetal rabbit model for congenital diaphragmatic hernia. Am J Obstet Gynecol 2004; 191 (03) 830-836
  • 136 Gallot D, Coste K, Jani J. , et al. Effects of maternal retinoic acid administration in a congenital diaphragmatic hernia rabbit model. Pediatr Pulmonol 2008; 43 (06) 594-603
  • 137 Delabaere A, Marceau G, Coste K. , et al. Effects of tracheal occlusion with retinoic acid administration on normal lung development. Prenat Diagn 2017; 37 (05) 427-434
  • 138 Delabaere A, Blanchon L, Coste K. , et al. Retinoic acid and tracheal occlusion for diaphragmatic hernia treatment in rabbit fetuses. Prenat Diagn 2018; 38 (07) 482-492
  • 139 Muensterer OJ, Nicola T, Farmer S, Harmon CM, Ambalavanan N. Temporary fetal tracheal occlusion using a gel plug in a rabbit model of congenital diaphragmatic hernia. J Pediatr Surg 2012; 47 (06) 1063-1066
  • 140 Elattal R, Rich BS, Harmon CM, Muensterer OJ. Pulmonary alveolar and vascular morphometry after gel plug occlusion of the trachea in a fetal rabbit model of CDH. Int J Surg 2013; 11 (07) 558-561
  • 141 Jani JC, Flemmer AW, Bergmann F. , et al. The effect of fetal tracheal occlusion on lung tissue mechanics and tissue composition. Pediatr Pulmonol 2009; 44 (02) 112-121
  • 142 Vuckovic A, Roubliova XI, Votino C, Naeije R, Jani JC. Signaling molecules in the fetal rabbit model for congenital diaphragmatic hernia. Pediatr Pulmonol 2012; 47 (11) 1088-1096
  • 143 Vuckovic A, Herber-Jonat S, Flemmer AW, Roubliova XI, Jani JC. Alveolarization genes modulated by fetal tracheal occlusion in the rabbit model for congenital diaphragmatic hernia: a randomized study. PLoS One 2013; 8 (07) e69210
  • 144 DeKoninck P, Toelen J, Roubliova X. , et al. The use of human amniotic fluid stem cells as an adjunct to promote pulmonary development in a rabbit model for congenital diaphragmatic hernia. Prenat Diagn 2015; 35 (09) 833-840
  • 145 Eastwood MP, Deprest J, Russo FM. , et al. MicroRNA 200b is upregulated in the lungs of fetal rabbits with surgically induced diaphragmatic hernia. Prenat Diagn 2018; 38 (09) 645-653
  • 146 Rojas-Moscoso JA, Antunes E, Figueira RR, Gonçalves FL, Simões AL, Sbragia L. The soluble guanylyl cyclase activator BAY 60-2770 potently relaxes the pulmonary artery on congenital diaphragmatic hernia rabbit model. Pediatr Surg Int 2014; 30 (10) 1031-1036
  • 147 Vuckovic A, Herber-Jonat S, Flemmer AW, Strizek B, Engels AC, Jani JC. Antenatal BAY 41-2272 reduces pulmonary hypertension in the rabbit model of congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 310 (07) L658-L669
  • 148 Russo FM, Toelen J, Eastwood MP. , et al. Transplacental sildenafil rescues lung abnormalities in the rabbit model of diaphragmatic hernia. Thorax 2016; 71 (06) 517-525