Synthesis 2020; 52(13): 1947-1958
DOI: 10.1055/s-0039-1691744
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Application of Tetrafluoroethylene (CF2CF2)-Containing Acetylene Derivatives

Gen Egashira
,
Chihiro Kajimoto
,
Takuto Kataoka
,
Shigeyuki Yamada
,
Tsutomu Konno
Further Information

Publication History

Received: 06 January 2020

Accepted after revision: 06 February 2020

Publication Date:
05 March 2020 (online)


Abstract

On treating 1,3,4-tribromo-1,1,2,2-tetrafluorobutane, readily prepared from commercially available 4-bromo-3,3,4,4-tetrafluorobut-1-ene, with 3.3 equivalents of LHMDS at 0 °C in THF, the corresponding lithium acetylide could be prepared quantitatively. The acetylide reacted well with various aldehydes, ketones, or chlorosilanes to give the corresponding acetylene derivatives in high yields. It was also found that various iodoarenes could participate in the cross-coupling reaction with the zinc acetylide, readily prepared from the lithium acetylide and ZnCl2·TMEDA complex, in the presence of Pd(PPh3)4 to bring about the adducts in high yields. Thus-obtained acetylene derivatives underwent smooth Diels–Alder reaction with various 1,3-dienes to afford the corresponding 1,4- or 1,3-cyclohexadiene derivatives. In addition, it was revealed that the oxidative aromatization of the resulting cyclohexadiene derivatives with DDQ took place very smoothly, providing the multi-substituted benzene derivatives having a tetrafluoro­ethylene group.

Supporting Information

 
  • References


    • For leading reviews, see:
    • 1a Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 1b Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 1c Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Gouverneur V, Müller K. Imperial College Press; London: 2012
    • 1d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1e O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1f Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1g Kirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 1h Bégué J.-P, Bonnet-Delpon D. J. Fluorine Chem. 2006; 127: 992
    • 1i Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303

      For reviews on synthetic methods for fluorinated materials, see:
    • 2a Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Chem. Rev. 2019; 119: 10718
    • 2b Feng Z, Xiao Y.-L, Zhang X. Acc. Chem. Res. 2018; 51: 2264
    • 2c Preshlock S, Tredwell M, Gouverneur V. Chem. Rev. 2016; 116: 719
    • 2d Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455

      For quite interesting properties of perfluoroalkylene-containing materials, see:
    • 3a Biffinger JC, Kim HW, DiMagno SG. ChemBioChem 2004; 5: 622
    • 3b Kim HW, Rossi P, Shoemeker RK, DiMagno SG. J. Am. Chem. Soc. 1998; 120: 9082
    • 4a Bianchi D, Cesti P, Spezia S, Garavaglia C, Mirenna L. J. Agric. Food Chem. 1991; 39: 197
    • 4b Plummer EL. U.S. Patent 4737509, 1988
    • 4c Plummer EL. U.S. Patent 4636523, 1987
    • 5a Gambetta A, Zaffagnini V, Capua ED. J. Cult. Heritage 2000; 1: 207
    • 5b The Pesticide Manual, 11th ed. Tomlin CD. S. British Crop Protection Council; UK: 1997: 676-677
  • 6 Pinto H, Corbin FT. Weed Sci. 1980; 28: 557
    • 7a Voltrová S, Muselli M, Filgas J, Matoušek V, Klepetářová B, Beier P. Org. Biomol. Chem. 2017; 15: 4962
    • 7b Budinská A, Václavík J, Matoušek V, Beier P. Org. Lett. 2016; 18: 5844
    • 7c Charpentier J, Früh N, Foser S, Togni A. Org. Lett. 2016; 18: 756
    • 7d Matoušek V, Václavík J, Hájek P, Charpentier J, Blastik ZE, Pietrasiak E, Budinská A, Togni A, Beier P. Chem. Eur. J. 2016; 22: 417
    • 7e Vaidyanathaswamy R, Raman GA, Ramkumar V, Anand R. J. Fluorine Chem. 2015; 169: 38
    • 7f Václavík J, Chernykh Y, Jurásek B, Beier P. J. Fluorine Chem. 2015; 169: 24
    • 7g Chernykh Y, Beier P. J. Fluorine Chem. 2013; 156: 307
    • 7h Chernykh Y, Hlat-Glembová K, Klepetářová B, Beier P. Eur. J. Org. Chem. 2011; 4528
    • 7i Petko KI, Kot SY, Yagupolskii LM. J. Fluorine Chem. 2008; 129: 301
    • 7j Uneyama K, Tanaka H, Kobayashi S, Shioyama M, Mii H. Org. Lett. 2004; 6: 2733
    • 7k Kobayashi S, Yamamoto Y, Amii H, Uneyama K. Chem. Lett. 2000; 1366

      For Linclau’s work, see:
    • 8a von Straaten KE, Kuttiyatveetil JR. A, Sevrain CM, Villaume SA, Jiménez-Barbero J, Linclau B, Vincent SP, Sanders DA. R. J. Am. Chem. Soc. 2015; 137: 1230
    • 8b N’Go I, Goten S, Ardá A, Canada J, Jiménez-Barbero J, Linclau B, Vincent S. Chem. Eur. J. 2014; 20: 106
    • 8c Ioannou A, Cini E, Timofte RS, Flitsch SL, Tuener NJ, Linclau B. Chem. Commun. 2011; 47: 11228
    • 8d Linclau B, Boydell AJ, Timofte RS, Brown KJ, Vinader V, Waymouth-Wilson AC. Org. Biomol. Chem. 2009; 7: 803
    • 8e Timofte RS, Linclau B. Org. Lett. 2008; 10: 3673
    • 8f Boydell AJ, Vinader V, Linclau B. Angew. Chem. Int. Ed. 2004; 43: 5677

    • For Gouverneur’s work, see:
    • 8g O’duill M, Dubost E, Pfeifer L, Gouverneur V. Org. Lett. 2015; 17: 3566
    • 8h Bonnac L, Lee SE, Giuffredi GT, Elphick LM, Anderson AA, Child ES, Mann DJ, Gouverneur V. Org. Biomol. Chem. 2010; 8: 1445

    • For our work, see:
    • 8i Konno T, Hoshino T, Kida T, Takano S, Ishihara T. J. Fluorine Chem. 2013; 152: 106

      For Kirsch’s work, see.
    • 9a Kirsch P, Bremer M, Huber F, Lannert H, Ruhl A, Lieb M, Wallmichrath T. J. Am. Chem. Soc. 2001; 123: 5414

    • For our work, see:
    • 9b Kumon T, Hashishita S, Kida T, Yamada S, Ishihara T, Konno T. Beilstein J. Org. Chem. 2018; 14: 148
    • 9c Yamashika K, Morishitabara S, Yamada S, Kubota T, Konno T. J. Fluorine Chem. 2018; 207: 24
    • 9d Yamada S, Hashishita S, Asai T, Ishihara T, Konno T. Org. Biomol. Chem. 2017; 15: 1495
    • 9e Yamada S, Hashishita S, Konishi H, Nishi Y, Kubota T, Asai T, Ishihara T, Konno T. J. Fluorine Chem. 2017; 200: 47
    • 9f Yamada S, Tamamoto K, Kida T, Asai T, Ishihara T, Konno T. Org. Biomol. Chem. 2017; 15: 9442
    • 10a Chang Y, Tewari A, Adi A.-I, Bae C. Tetrahedron 2008; 64: 9837
    • 10b Singh RP, Shreeve JM. Org. Lett. 2001; 3: 2713
    • 10c Singh RP, Majumder U, Shreeve J. J. Org. Chem. 2001; 66: 6263
    • 11a Ohashi M, Adachi T, Ishida N, Kikushima K, Ogoshi S. Angew. Chem. Int. Ed. 2017; 56: 11911
    • 11b Ohashi M, Shirataki H, Kikushima K, Ogoshi S. J. Am. Chem. Soc. 2015; 137: 6496
    • 11c Ohashi M, Kawashima T, Taniguchi T, Kikushima K, Ogoshi S. Organometallics 2015; 34: 1604
    • 11d Saijo H, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15158
    • 12a Dmowski W. J. Fluorine Chem. 2012; 142: 6
    • 12b Toulgoat F, Langlois BR, Médebielle M, Sanchez J.-Y. J. Org. Chem. 2007; 72: 9046
    • 12c Li J, Qiao JX, Smith D, Chen B.-C, Salvani ME, Roberge JY, Balasubramanian BN. Tetrahedron Lett. 2007; 48: 7516
    • 13a Yakushijin R, Yamada S, Konno T. J. Fluorine Chem. 2019; 225: 35
    • 13b Tamamoto K, Yamada S, Konno T. Beilstein J. Org. Chem. 2018; 14: 2375
    • 13c Sakaguchi Y, Yamada S, Konno T, Agou T, Kubota T. J. Org. Chem. 2017; 82: 1618
    • 13d Watanabe Y, Konno T. J. Fluorine Chem. 2015; 174: 102
    • 13e Konno T, Takano S, Takahashi Y, Konishi H, Tanaka Y, Ishihara T. Synthesis 2011; 33
  • 14 For a review on fluoroalkylated acetylene derivatives, see: Konno T. Synlett 2014; 25: 1350 ; and references cited therein
  • 15 The reaction mechanism for the generation of 7 remains unclear.
    • 16a Hiyama T, Sato K. Synlett 1990; 53
    • 16b Kuwabara M, Fukunishi K, Nomura M, Yamanaka H. J. Fluorine Chem. 1988; 41: 227
    • 16c Kobayashi Y, Yamashita T, Takahashi K, Kuroda H, Kumadaki I. Tetrahedron Lett. 1982; 23: 343
  • 17 2,3-Dimethylbuta-1,3-diene is more reactive than buta-1,3-diene. Therefore, it is highly possible that the Diels–Alder reaction between the former and 9a proceeded very smoothly, whereas the reaction between the latter and 9a did not take place smoothly, because then 9a decomposed.