Synthesis 2020; 52(07): 1122-1130
DOI: 10.1055/s-0039-1691642
paper
© Georg Thieme Verlag Stuttgart · New York

Preparation of 2-Arylquinolines from 2-Arylethyl Bromides and Aromatic Nitriles with Magnesium and N-Iodosuccinimide

Hiroki Naruto
,
Hideo Togo
Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan   Email: togo@faculty.chiba-u.jp
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant number JP15K05418.
Further Information

Publication History

Received: 18 November 2019

Accepted after revision: 19 December 2019

Publication Date:
23 January 2020 (online)


Abstract

Treatment of 2-arylethylmagnesium bromides, prepared from 2-arylethyl bromides and magnesium, with aromatic nitriles, followed by reaction with water and then with N-iodosuccinimide under irradiation with a tungsten lamp, gave the corresponding 2-arylquinolines in good to moderate yields under transition-metal-free conditions. 2-Alkylquinolines could be also obtained in moderate yields by the same procedure with 2-arylethyl bromides, magnesium, aliphatic nitriles­ bearing a secondary alkyl group, and N-iodosuccinimide.

Supporting Information

 
  • References

    • 1a Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
    • 1b Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
    • 1c Gorka AP, de Dios A, Roepe PD. J. Med. Chem. 2013; 56: 5231
    • 1d Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
    • 1e Chen Y, Fang K, Sheu J, Hsu S, Tzeng C. J. Med. Chem. 2001; 44: 2374
    • 1f Roma G, Braccio M, Grossi G, Mattioli F, Ghia M. Eur. J. Med. Chem. 2000; 35: 1021
    • 2a Foley M, Tilley L. Pharmacol. Ther. 1998; 79: 55
    • 2b Kaminsky D, Meltzer RI. J. Med. Chem. 1968; 11: 160
  • 3 Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463
  • 4 Kouznetsov VV, Mendez LY, Gomez CM. Curr. Org. Chem. 2005; 9: 141
    • 5a Kumar P, Grag V, Kumar M, Verma AK. Chem. Commun. 2019; 55: 12168
    • 5b Mahato S, Mukherjee A, Santra S, Zyryanov GV, Majee A. Org. Biomol. Chem. 2019; 17: 7907
    • 5c Qiu Y, Niu Y, Wei X, Cao B, Wang X, Quan Z. J. Org. Chem. 2019; 84: 4165
    • 5d Das K, Mondal A, Pal D, Srimani D. Org. Lett. 2019; 21: 3223
    • 5e Fan Z, Yang S, Peng X, Zhang C, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. Tetrahedron 2019; 75: 868
    • 5f Li Y, Zhang Q, Xu X, Zhang X, Yang Y, Yi W. Tetrahedron Lett. 2019; 60: 965
    • 5g Wei W, Teng F, Li Y, Song R, Li J. Org. Lett. 2019; 21: 6285
    • 5h Rode ND, Arcadi A, Nicola AD, Marinelli F, Michelet V. Org. Lett. 2018; 20: 5103
    • 5i Li M, Zheng J, Hu W, Li C, Li J, Fang S, Jiang H, Wu W. Org. Lett. 2018; 20: 7245
    • 5j Wang F, Xu P, Wang S, Ji S. Org. Lett. 2018; 20: 2204
    • 5k Yaragorla S, Pareek A. Eur. J. Org. Chem. 2018; 1863
    • 5l Khaikate O, Meesin J, Pohmakotr M, Reutrakul V, Leowanawat P, Soorukram D, Kuhakarn C. Org. Biomol. Chem. 2018; 16: 8553
    • 5m Mastalir M, Glatz M, Pitterauer E, Allmaier G, Kirchner K. J. Am. Chem. Soc. 2016; 138: 15543
    • 6a Yin W, Wang X. New J. Chem. 2019; 43: 3254
    • 6b Davies J, Morcillo SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
    • 6c Jackman MM, Cai Y, Castle SL. Synthesis 2017; 49: 1785
    • 6d Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
  • 7 Kishi A, Moriyama K, Togo H. J. Org. Chem. 2018; 83: 11080
  • 8 Naruto H, Togo H. Org. Biomol. Chem. 2019; 17: 5760