Synthesis 2020; 52(07): 1087-1095
DOI: 10.1055/s-0039-1691540
paper
© Georg Thieme Verlag Stuttgart · New York

Synthetic Approaches to the Bifunctional Chelators for Radio­nuclides Based On Pyridine-Containing Azacrown Compounds

a  A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russian Federation   Email: nastya.mutasova@yandex.ru
,
Anna A. Shchukina
a  A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russian Federation   Email: nastya.mutasova@yandex.ru
b  D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russian Federation
,
Olga A. Fedorova
a  A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russian Federation   Email: nastya.mutasova@yandex.ru
b  D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russian Federation
› Author Affiliations
The work was supported by Russian Science Foundation (grant No 16-13-10226). The characterization of the products was performed with the financial support from the Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS.
Further Information

Publication History

Received: 11 October 2019

Accepted after revision: 03 December 2019

Publication Date:
16 December 2019 (online)


Abstract

Synthetic ways to introduce functional groups (CO2Me, CO2H, OCH2CO2H, OCH2C≡CH, CH2OH, CH2Cl, CH2N3) into the pyridine ring of pyridine-containing azacrown compounds are described. These groups were introduced at position-4 of the pyridine ring, while keeping the macrocyclic carboxylate groups available for metal chelation. The derivatives were obtained by macrocyclization reaction of 4-substituted, trimethyl pyridine-2,4,6-tricarboxylate or by modification of methyl ester group in pyridine fragment of macrocycles. Obtained derivatives can be applied for preparing radiotherapeutic agents by conjugation to different vector biomolecules for targeted drug delivery to cancer cells without damaging healthy tissue.

Supporting Information

 
  • References

  • 1 Bourgeois M, Bailly C, Frindel M, Guerard F, Chérel M, Faivre-Chauvet A, Bodet-Milin C. Expert Opin. Biol. Ther. 2017; 17: 813
  • 2 Cai Z, Anderson CJ. J. Labelled Compd. Radiopharm. 2014; 57: 224
  • 3 Ramogida CF, Orvig C. Chem. Commun. 2013; 49: 4720
  • 4 Velikyan I. Theranostics 2012; 2: 424
  • 5 Price EW, Orvig C. Chem. Soc. Rev. 2014; 43: 260
  • 6 Liu S. Adv. Drug Deliv. Rev. 2008; 60: 1347
  • 7 Lattuada L, Barge A, Cravotto G, Giovenzana GB, Tei L. Chem. Soc. Rev. 2011; 40: 3019
  • 8 Läppchen T, Kiefer Y, Holland JP, Bartholomä MD. Nucl. Med. Biol. 2018; 60: 45
  • 9 Li L, Jaraquemada-Peláez MD. G, Kuo HT, Merkens H, Choudhary N, Gitschalter K, Schaffer P. Bioconjugate Chem. 2019; 30: 1539
  • 10 Giannini G, Milazzo FM, Battistuzzi G, Rosi A, Anastasi AM, Petronzelli F, Albertoni C, Tei L, Leone L, Salvini L, De Santis R. Bioorg. Med. Chem. 2019; 27: 3248
  • 11 Pandey U, Gamre N, Lohar SP, Dash A. Appl. Radiat. Isot. 2017; 127: 1
  • 12 Weinmann C, Holland JP, Läppchen T, Scherer H, Maus S, Stemler T, Bartholomä MD. Org. Biomol. Chem. 2018; 16: 7503
  • 13 Banerjee SR, Pullambhatla M, Foss CA, Nimmagadda S, Ferdani R, Anderson CJ, Pomper MG. J. Med. Chem. 2014; 57: 2657
  • 14 Dumont RA, Deininger F, Haubner R, Maecke HR, Weber WA, Fani M. J. Nucl. Med. 2011; 52: 1276
  • 15 Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Chem. Rev. 2013; 113: 858
  • 16 Bartholomä MD. Inorg. Chim. Acta 2012; 389: 36
  • 17 Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C, Ma MT. RSC Adv. 2017; 7: 49586
  • 18 Felten AS, Petry N, Henry B, Pellegrini-Moïse N, Selmeczi K. New J. Chem. 2016; 40: 1507
  • 19 Zha Z, Song J, Choi SR, Wu Z, Ploessl K, Smith M, Kung H. Bioconjugate Chem. 2016; 27: 1314
  • 20 Silversides JD, Smith R, Archibald SJ. Dalton Trans. 2011; 40: 6289
  • 21 Mewis RE, Archibald SJ. Coord. Chem. Rev. 2010; 254: 1686
  • 22 Kang CS, Sun X, Jia F, Song HA, Chen Y, Lewis M, Chong HS. Bioconjugate Chem. 2012; 23: 1775
  • 23 Parus JL, Pawlak D, Mikolajczak R, Duatti A. Curr. Radiopharm. 2015; 8: 86
  • 24 Blom E, Långström B, Velikyan I. Bioconjugate Chem. 2009; 20: 1146
  • 25 D’huyvetter M, Aerts A, Xavier C, Vaneycken I, Devoogdt N, Gijs M, Caveliers V. Contrast Media Mol. Imaging 2012; 7: 254
  • 26 Spang P, Herrmann C, Roesch F. Semin. Nucl. Med. 2016; 46: 373
  • 27 Dadwal M, Kang CS, Song HA, Sun X, Dai A, Baidoo KE, Brechbiel MW, Chong HS. Bioorg. Med. Chem. Lett. 2011; 21: 7513
  • 28 Hassfjell S, Brechbiel MW. Chem. Rev. 2001; 101: 2019
  • 29 Fedorov Y, Fedorova O, Peregudov A, Kalmykov S, Egorova B, Arkhipov D, Zubenko A, Oshchepkov M. J. Phys. Org. Chem. 2016; 29: 244
  • 30 Fedorov YV, Fedorova OA, Kalmykov SN, Oshchepkov MS, Nelubina YV, Arkhipov DE, Egorova BV, Zubenko AD. Polyhedron 2017; 124: 229
  • 31 Egorova BV, Matazova EV, Mitrofanov AA, Aleshin GY, Trigub AL, Zubenko AD, Fedorova OA, Fedorov YV, Kalmykov SN. Nucl. Med. Biol. 2018; 60: 1
  • 32 Jamous M, Haberkorn U, Mier W. Molecules 2013; 18: 3379
  • 33 Lymperis E, Kaloudi A, Sallegger W, Bakker IL, Krenning EP, De Jong M, Maina T, Nock BA. Bioconjugate Chem. 2018; 29: 1774
  • 34 Eppard E, De La Fuente A, Mohr N, Allmeroth M, Zentel R, Miederer M, Pektor S, Rösch F. EJNMMI Res. 2018; 8: 16
  • 35 Muller C, Farkas R, Borgna F, Schmid RM, Benesova M, Schibli R. Bioconjugate Chem. 2017; 28: 2372
  • 36 Calce E, Monfregola L, De Luca S. Int. J. Pept. Res. Ther. 2013; 19: 199
  • 37 de la Reberdière A, Lachaud F, Chuburu F, Cadiou C, Lemercier G. Tetrahedron Lett. 2012; 53: 6115
  • 38 Jamous M, Haberkorn U, Mier W. Tetrahedron Lett. 2012; 53: 810
  • 39 Kubicek V, Havlickova J, Kotek J, Tircso G, Hermann P, Toth E, Lukes I. Inorg. Chem. 2010; 49: 10960
  • 40 Leygue N, Enel M, Diallo A, Mestre-Voegtlé B, Galaup C, Picard C. Eur. J. Org. Chem. 2019; 2899
  • 41 Weekley CM, Kenkel I, Lippert R, Wei S, Lieb D, Cranwell T, Ivanović-Burmazović I. Inorg. Chem. 2017; 56: 6076
  • 42 Lin Y, Favre-Réguillon A, Pellet-Rostaing S, Lemaire M. Tetrahedron Lett. 2007; 48: 3463
  • 43 Le Bihan T, Navarro AS, Le Bris N, Le Saec P, Gouard S, Haddad F, Tripier R. Org. Biomol. Chem. 2018; 16: 4261
  • 44 Chakraborty S, Goswami D, Chakravarty R, Mohammed SK, Sarma HD, Dash A. Chem. Biol. Drug Des. 2018; 92: 1618
  • 45 Désogère P, Rousselin Y, Poty S, Bernhard C, Goze C, Boschetti F, Denat F. Eur. J. Org. Chem. 2014; 7831
  • 46 Förster C, Schubert M, Pietzsch HJ, Steinbach J. Molecules 2011; 16: 5228
  • 47 Suzuki H, Kanai A, Uehara T, Gomez FL. G, Hanaoka H, Arano Y. Bioorg. Med. Chem. 2012; 20: 978
  • 48 Huang Y, Liu Y, Liu S, Wu R, Wu Z. Eur. J. Org. Chem. 2018; 1546
  • 49 Chong HS, Sun X, Dong P, Kang CS. Eur. J. Org. Chem. 2011; 6641
  • 50 Hoareau R, Scott PJ. H. Tetrahedron Lett. 2013; 54: 5755
  • 51 Wardle NJ, Herlihy AH, So PW, Bell JD, Bligh SA. Bioorg. Med. Chem. 2007; 15: 4714
  • 52 Korendovych IV, Cho M, Makhlynets OV, Butler PL, Staples RJ, Rybak-Akimova EV. J. Org. Chem. 2008; 73: 4771
  • 53 Gryko D, Gryko DT, Sierzputowska-Gracz H, Piątek P, Jurczak J. Helv. Chim. Acta 2004; 87: 156
  • 54 Dabrowa K, Niedbala P, Majdecki M, Duszewski P, Jurczak J. Org. Lett. 2015; 17: 4774
  • 55 Molecular & Diagnostic Imaging in Prostate Cancer . Schatten H. Springer International Publishing AG; Cham (Switzerland): 2018
  • 56 Rasheed OK, McDouall JJ. W, Muryn CA, Raftery J, Vitorica-Yrezabal IJ, Quayle P. Dalton Trans. 2017; 46: 5229
  • 57 Baptiste B, Douat-Casassus C, Laxmi-Reddy K, Godde F, Huc I. J. Org. Chem. 2010; 75: 7175
  • 58 Zubenko AD, Egorova BV, Kalmykov SN, Shepel NE, Karnoukhova VA, Fedyanin IV, Fedorov YV, Fedorova OA. Tetrahedron 2019; 75: 2848
    • 59a Makarem A, Klika KD, Litau G, Remde Y, Kopka K. J. Org. Chem. 2019; 84: 7501
    • 59b Makarem A, Kamali Sarvestani M, Klika K, Kopka K. Synlett 2019; 30: 1795
  • 60 Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
  • 61 Bock VD, Hiemstra H, Van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
    • 62a Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 62b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 63a Berg R, Straub BF. Beilstein J. Org. Chem. 2013; 9: 2715
    • 63b Schöffler A, Makarem A, Rominger A, Straub BF. Beilstein J. Org. Chem. 2016; 12: 1566
  • 64 Wu C, Li D, Yang L. J. Mater. Chem. B 2015; 3: 1470
  • 65 Le Bihan T, Le Bris N, Bernard H, Platas-Iglesias C, Tripier R. Eur. J. Org. Chem. 2019; 5955
  • 66 Banerjee SR, Schaffer P, Babich JW, Valliant JF, Zubieta J. Dalton Trans. 2005; 3886
  • 67 Shelkov R, Melman A. Eur. J. Org. Chem. 2005; 1397
  • 68 Yu K.-K, Li K, Hou J.-T, Yu X.-Q. Tetrahedron Lett. 2013; 54: 5771