Synlett 2020; 31(01): 65-68
DOI: 10.1055/s-0039-1691502
letter
© Georg Thieme Verlag Stuttgart · New York

Nickel(0)-Catalyzed [3+2]-Cycloadditions of Bis(alkylidenecyclopropanes) with Diazenes: A Facile Synthesis of Functionalized ­Pyrazolidine-1,2-dicarboxylates

Bilash Kuila
a  Department of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, Punjab-144603, India   Email: gaurav@ptu.ac.in   Email: gauravorganic@gmail.com
,
Rayees Naikoo
a  Department of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, Punjab-144603, India   Email: gaurav@ptu.ac.in   Email: gauravorganic@gmail.com
,
Dinesh Mahajan
b  Drug Discovery Research Centre (DDRC), Translational Health Sciences and Technology Institute (THSTI), Faridabad-121001, India
,
Prabhpreet Singh
c  Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
,
Gaurav Bhargava
a  Department of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, Punjab-144603, India   Email: gaurav@ptu.ac.in   Email: gauravorganic@gmail.com
› Author Affiliations
The Board of Research in Nuclear Sciences (BRNS), India, is thanked for Research Grant, Project No.2013/37C/11/BRNS/198. The Department of Science and Technology (DST), India, is also thanked for Research Grant, Project No. SB/FT/CS-079/2012.
Further Information

Publication History

Received: 08 September 2019

Accepted after revision: 07 November 2019

Publication Date:
26 November 2019 (online)


Abstract

A nickel(0)-catalyzed intermolecular [3+2] cycloaddition of bis(alkylidenecyclopropanes) with diazenes such as diethyl or diisopropyl azodicarboxylate gave pyrazolidine-1,2-dicarboxylates in moderate to good yields (61–72%).

Supporting Information

 
  • References and Notes

    • 1a Inglesby PA, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 1b Balme G, Bouyssi G, Monteiro N. In Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005. Chap. 8, 224
    • 1c Wang Y, Wang J, Su J, Huang F, Jiao L, Liang Y, Yang D, Zhang S, Wender PA, Yu Z.-X. J. Am. Chem. Soc. 2007; 129: 10060
    • 2a Kulinkovich OG. Cyclopropanes in Organic Synthesis . Wiley; Hoboken: 2015. ; and references cited therein
    • 2b Jiaxin L, Liu R, Wei Y, Shi M. Trends Chem. 2019; 1: 779
    • 2c Binger P, Büch HM. Top. Curr. Chem. 1987; 135: 77
    • 2d Trost BM. Angew. Chem. Int. Ed. 1986; 25: 1
    • 3a Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 3b Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 3c Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 4a Shao L.-X, Shi M. Curr. Org. Chem. 2007; 11: 1135
    • 4b Waser J, De Simone F. Synthesis 2009; 3353
    • 4c Lautens M, Ren Y. J. Am. Chem. Soc. 1996; 118: 9597
    • 5a Korotkov VS, Larionov OV, Hofmeister A, Magull J, Meijere AD. J. Org. Chem. 2007; 72: 7504
    • 5b Zhao L, De Meijere A. Adv. Synth. Catal. 2006; 384: 2484

      For metal-catalyzed [m+n]-cycloaddition reactions, see:
    • 6a Noyori R, Odagi T, Takaya H. J. Am. Chem. Soc. 1970; 92: 5780
    • 6b Noyori R, Kumagai Y, Umeda I, Takaya H. J. Am. Chem. Soc. 1972; 94: 4018
    • 6c Binger P, Doyle MJ, Benn R. Chem. Ber. 1983; 116: 1
    • 6d Binger P, Brinkmann A, Wedemann P. Chem. Ber. 1983; 116: 2920
    • 6e Binger P, Freund A, Wedemann P. Tetrahedron 1989; 45: 2887
    • 6f Trost BM, MacPherson DT. J. Am. Chem. Soc. 1987; 109: 3483
    • 6g Trillo B, López F, Gulias M, Castedo L, Mascareñas JL. Angew. Chem. Int. Ed. 2008; 47: 951
    • 6h Trost BM, Hu Y, Horne DB. J. Am. Chem. Soc. 2007; 129: 11781
    • 7a Kuila B, Mahajan D, Singh P, Bhargava G. Tetrahedron Lett. 2015; 56: 1307
    • 7b Kuila B, Mahajan D, Singh P, Bhargava G. Eur. J. Org. Chem. 2018; 853
    • 8a Ansari A, Ali A, Asif M. ; Shamsuzzaman New J. Chem. 2017; 41: 16
    • 8b Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-aizari FA, Ansar M. Molecules 2018; 23: 134 ; and reference cited therein
  • 9 Mert S, Kasimogullari R, Ica T, Colak F, Altun A, Ok S. Eur. J. Med. Chem. 2014; 78: 86
    • 10a Tu X.-J, Hao W.-J, Ye Q, Wang S.-S, Jiang B, Li G, Tu S.-J. J. Org. Chem. 2014; 79: 11110
    • 10b Castagnolo D, Schenone S, Botta M. Chem. Rev. 2011; 111: 5247
  • 11 Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 12a Elguero J. In Comprehensive Heterocyclic Chemistry, Vol. 5. Katritzky AR, Rees CW, Potts KT. Pergamon; Oxford: 1984. Chap. 4.04, 167
    • 12b Elguero J. Comprehensive Heterocyclic Chemistry II, Vol. 3. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996. Chap. 3.01, 1
    • 12c Katritzky AR, Wang M, Zhang S, Voronkov MV, Steel PJ. J. Org. Chem. 2001; 66: 6787
    • 12d Huang YR. Katzenellenbogen J. A. Org. Lett. 2000; 2: 2833
    • 12e Wang C, Chen Y, Li J, Zhou L, Wang B, Xiao Y, Guo H. Org. Lett. 2019; 21: 7519
    • 12f Liu X, Zhou Y, Song Q. Chem. Commun. 2019; 55: 8943 ; and references cited therein
    • 13a Yamazaki S, Maenaka Y, Fujinami K, Mikata Y. RSC Adv. 2012; 2: 8095
    • 13b Chaudhry F, Kariuki BM, Knight DW. Tetrahedron Lett. 2016; 57: 2833
  • 14 Stolle A, Ollivier J, Piras PP, Salaiin S, De Meijere A. J. Am. Chem. Soc. 1992; 114: 4051
    • 15a Saya L, Bhargava G, Navarro MA, Gulias M, López F, Fernández I, Castedo L, Mascareñas JL. Angew. Chem. Int. Ed. 2010; 49: 9886
    • 15b Saya L, Fernández I, López F, Mascareñas JL. Org. Lett. 2014; 16: 5008
  • 16 An excess of the azodienophile is used to compensate for its thermal decomposition during the reaction.
  • 17 [3+2]-Cycloadducts 3a–f; General Procedure Dialkyl azodicarboxylate 2 (2 mmol, 10 equiv) was added to a solution of the appropriate bis(alkylidenecyclopropane) 1 (0.2 mmol, 1 equiv) in toluene (4 mL), and the mixture was degassed for 10 min under argon. Ni(COD)2 (5 mol%) was added, and the mixture was heated to 90 °C for 16 h. After completion of the reaction, the mixture was cooled to r.t., directly loaded onto a column without evaporation, and purified by flash chromatography [silica gel (100–200 mesh), EtOAc–hexanes].
  • 18 Diethyl (3E)-3-[5-Cyclopropylidene-3,3-bis(methoxycarbonyl)pentylidene]pyrazolidine-1,2-dicarboxylate (3a) Colorless liquid; yield: 119 mg (72%). 1H NMR (300 MHz, CDCl3): δ = 5.71 (m, 1 H), 5.48 (m, 1 H), 4.13–4.20 (m, 4 H), 3.71 (s, 6 H), 3.65 (m, 2 H), 2.75 (d, J = 9, Hz, 2 H), 2.49 (br s, 2 H), 2.01 (m, 2 H), 1.22–1.27 (m, 6 H), 0.99 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 171.1, 156.3, 137.7, 126.9, 116.0, 112.3, 61.5, 57.7, 52.1, 46.7, 37.0, 35.5, 29.3, 14.6, 2.6, 2.0. LRMS (ESI): m/z = 439.2 [M + H]+. HRMS (ESI): m/z [M + H]+ calcd for C21H31N2O8: 439.2080; found: 439.2067. Diethyl (3E)-3-[5-Cyclopropylidene-3,3-bis(isopropoxycarbonyl)pentylidene]pyrazolidine-1,2-dicarboxylate (3c) Pale-yellow liquid; yield: 94 mg (61%). 1H NMR (300 MHz, CDCl3): δ = 5.61 (m, 1 H), 5.57 (m, 1 H), 5.03 (m, 2 H), 4.19 (m, 4 H), 3.70 (m, 2 H), 2.76 (d, J = 7.2 Hz, 2 H), 2.66 (bs, 2 H), 1.78 (m, 2 H), 1.20–1.32 (m, 18 H), 1.05 (t, J = 4.5 Hz, 2 H), 1.02 (t, J = 4.5 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 170.4, 155.6, 137.7, 126.2, 115.5, 112.1, 69.0, 62.4, 57.0, 46.1, 37.8, 35.8, 29.6, 21.5, 14.5, 2.8, 2.0. LRMS (ESI): m/z = 495.3 [M + H]+. HRMS (ESI): m/z [M + H]+ calcd for C25H39N2O8: 495.2706; found: 495.2718.