Synthesis 2020; 52(16): 2387-2394
DOI: 10.1055/s-0039-1690895
paper
© Georg Thieme Verlag Stuttgart · New York

Regiospecific Palladium-Catalyzed Cross-Coupling Reactions Using the Operational Equivalent of 1,3-Dilithiopropyne

Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica   Email: [email protected]
,
Natasha Ferllini
› Author Affiliations
We thank the University of Costa Rica and Vicerrectoría de Investigación for financial support.
Further Information

Publication History

Received: 05 March 2020

Accepted after revision: 26 March 2020

Publication Date:
07 April 2020 (online)


Abstract

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.

Supporting Information

 
  • References

  • 1 For a review on palladium-catalyzed alkynylation see: Negishi E, Anastasia L. Chem. Rev. 2003; 103: 1979
  • 2 Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 3313
  • 3 Dieck HA, Heck FR. J. Organomet. Chem. 1975; 93: 259
  • 4 Cassar L. J. Organomet. Chem. 1975; 93: 253
  • 5 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 50: 4467
  • 6 King AO, Okukado N, Negishi EI. J. Chem. Soc., Chem. Commun. 1977; 683
  • 7 King AO, Negishi EI. J. Org. Chem. 1978; 43 (02) 358
  • 8 Dang HP, Linstrumelle G. Tetrahedron Lett. 1978; 191
    • 9a Soderquist JA, Matos K, Rane A, Ramos J. Tetrahedron Lett. 1995; 36 (14) 2401
    • 9b Soderquist JA, Rane AM, Matos K, Ramos J. Tetrahedron Lett. 1995; 36 (38) 6847
  • 10 Takai K, Oshima K, Nozaki H. Tetrahedron Lett. 1980; 21 (26) 2531
  • 11 Negishi EI, Kotora M, Xu C. J. Org. Chem. 1997; 62: 8957
  • 12 For a historical review on palladium-catalyzed cross-coupling reactions, see: Johansson-Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 13 Negishi EI, Akiyoshi K, Takahashi T. J. Chem. Soc., Chem. Commun. 1987; 477
  • 14 For a review on the synthesis of heterocyclic compounds through substituted alkynes, see: Pal M. Synlett 2009; 2896
  • 15 Kundu NG, Pal M. J. Chem. Soc., Chem. Commun. 1993; 86
  • 16 Chen L, Li Y, Xu MH. Org. Biomol. Chem. 2010; 8: 3073
    • 17a Kundu NG, Pal M, Mahanty JS, Dasgupta SK. J. Chem. Soc., Chem. Commun. 1992; 41
    • 17b Kundu NG, Pal M, Mahanty JS, De M. J. Chem. Soc., Perkin Trans. 1 1997; 2815
    • 17c Arcadi A, Blesi F, Cacchi S, Fabrizi G, Goggiamani A. Tetrahedron Lett. 2011; 52: 5149
    • 18a Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 18b Luo YG, Basha RS, Reddy DM, Xue YJ, Chen TH, Lee CF. Org. Lett. 2018; 20: 6872
    • 18c Lessing T, Müller TJ. J. Chem. Heterocycl. Compd. 2018; 54: 334
  • 19 Barange DK, Batchu VR, Gorja D, Pattabiraman VR, Tatini LK, Babu JM, Pal M. Tetrahedron 2007; 63: 1775
  • 20 Yan B, Fu Y, Zhu H, Chen Z. J. Org. Chem. 2019; 84: 4246
  • 21 Zhao Y, Zhang Z, Liu X, Wang Z, Cao Z, Tian L, Yue M, You J. J. Org. Chem. 2019; 84: 1379
    • 22a Birkinshaw JH, Chaplen P. Biochem. J. 1955; 60: 255
    • 22b Atkinson RE, Curtis RF, Taylor JA. J. Chem. Soc. C 1967; 578
    • 22c Carpita A, Lezzi A, Rossi R, Marchetti F, Merlino S. Tetrahedron 1985; 41 (03) 621
    • 22d Christensen LP, Lam J. Phytochemistry 1991; 30 (01) 11
    • 22e Zhang L, Chen CJ, Chen J, Zhao QQ, Li Y, Gao K. Phytochemistry 2014; 106: 134
    • 23a Yu H, Richey RN, Mendiola J, Adeva M, Somoza C, May SA, Carson MW, Coghlan MJ. Tetrahedron Lett. 2008; 49: 1915
    • 23b Richey RN, Yu H. Org. Process Res. Dev. 2009; 13: 315
  • 24 Sörensen JS, Sörensen NA. Acta Chem. Scand. 1958; 12: 771
  • 25 Kimura Y, Hiraoka K, Kawano T, Fujioka S, Shimada A. Z. Naturforsch., C: J. Biosci. 2008; 63: 843
  • 26 Guddal E, Sörensen NA. Acta Chem. Scand. 1959; 13: 1185
  • 27 Hooz J, Cabezas J, Musmanni S, Calzada J. Org. Synth. 1990; 69: 120
  • 28 For the original report on this preparation, see: Hooz J, Calzada JG, McMaster D. Tetrahedron Lett. 1985; 26 (03) 271
  • 29 Cabezas JA, Alvarez LX. Tetrahedron Lett. 1998; 39: 3935
  • 30 Cabezas JA, Pereira AR, Amey A. Tetrahedron Lett. 2001; 42: 6819
  • 31 Vásquez S, Cabezas JA. Tetrahedron Lett. 2014; 55: 1894
  • 32 Pereira AR, Cabezas JA. J. Org. Chem. 2005; 70 (07) 2594
    • 33a Bandi S, Debata NB, Ramkumar V, Chand DK. Inorg. Chem. Commun. 2014; 39: 75
    • 33b Hughes RP, Overby JS, Williamson A, Lam KC, Concolino TE, Rheingold AL. Organometallics 2000; 19 (24) 5190
    • 33c Gogoll A, Oernebro J, Grennberg H, Baeckvall JE. J. Am. Chem. Soc. 1994; 116: 3631
    • 33d Meek DW. Inorg. Chem. 1965; 4 (02) 250
    • 34a Bhanu S, Scheinmann F. J. Chem. Soc., Chem. Commun. 1975; 817
    • 34b Bhanu S, Scheinmann F. J. Chem. Soc., Perkin Trans. 1 1979; 1218
  • 35 Umaña CA, Cabezas JA. J. Org. Chem. 2017; 82: 9505
  • 36 A solvent ratio (v/v) of ether/hexane of 1:1 was used, as previously reported.27
  • 37 Cabezas JA, Poveda RR, Brenes JA. Synthesis 2018; 50: 3307
  • 38 Corey EJ, Beames DJ. J. Am. Chem. Soc. 1972; 94: 7210
  • 39 House HO, Umen M. J. Org. Chem. 1973; 38: 3893
  • 40 Corey EJ, Floyd D, Lipshutz BH. J. Org. Chem. 1978; 43: 3418
  • 41 Mandeville WH, Whitesides GM. J. Org. Chem. 1974; 39: 400
  • 42 House HO, Chu CY, Wilkins JM, Umen MJ. J. Org. Chem. 1975; 40: 1460
  • 43 Yamanaka M, Nakamura E. J. Am. Chem. Soc. 2005; 127: 4697
    • 44a Lipshutz BH, Wilhelm RS, Kozlowski JA. Tetrahedron 1984; 40: 5005
    • 44b Lipshutz BH. Synthesis 1987; 325
  • 45 Campos-Fernández CS, Pineda LW, Cabezas-Pizarro J. IUCrData 2019; 4: x191585
  • 46 Pineda LW, Cabezas JA. IUCrData 2019; 4: x191176
  • 47 Cabezas JA, Arias ML. Int. J. Curr. Res. 2019; 11: 5224
  • 48 The presence of the propynyl group in sulfonamide 18 considerably increased its antibacterial activity when compared to iodosulfonamide 17. Propynylbenzenesulfonamide 18 was found to be 20.5 times more active than iodofulfonamide 17 against Staphylococcus aureus, and 5 times more active against Escherichia coli.47
  • 49 Schulte KE, Bohn G. Arch. Pharm. 1964; 297: 179
  • 50 Watson SC, Eastham JF. J. Organomet. Chem. 1967; 9: 165