Synlett 2020; 31(11): 1033-1039
DOI: 10.1055/s-0039-1690853
synpacts
© Georg Thieme Verlag Stuttgart · New York

3-(2-Isocyanoethyl)indole: A Versatile Reagent for Polycyclic Spiroindoline Synthesis

Guo-Shu Chen
,
Xiao-Tong Lin
,
Yun-Lin Liu
The National Natural Science Foundation of China (Grant No. 21801050) and the Scientific Research Project of Guangzhou Municipal Colleges and Universities (Grant No. 201831816) are gratefully acknowledged for financial support.
Further Information

Publication History

Received: 11 February 2020

Accepted after revision: 19 February 2020

Publication Date:
12 March 2020 (online)


These authors contributed equally.

Abstract

Polycyclic spiroindolines are the basic skeletons of large families of indole alkaloids that exhibit a broad spectrum of biological and pharmacological activities. The past seven years have seen impressive developments in the construction of polycyclic spiroindolines enabled by 3-(2-isocyanoethyl)indole-based cascade reactions. We herein give a brief summary on this evolution and highlight our contributions in this field.

1 Introduction

2 Cascade Reactions Involving Nitrilium Ion Intermediates

3 Cascade Reactions Involving Ketenimine Intermediates

4 Conclusion and Outlook

 
  • References

    • 1a van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R. Curr. Med. Chem. 2004; 11: 607
    • 1b Kaur K, Jain M, Kaur T, Jain R. Bioorg. Med. Chem. 2009; 17: 3229
    • 1c Ishikura M, Yamada K, Abe T. Nat. Prod. Rep. 2010; 27: 1630
    • 1d Anagnostaki EE, Zografos AL. Chem. Soc. Rev. 2012; 41: 5613
    • 1e Roche SP, Youte Tendoung J.-J, Tréguier B. Tetrahedron 2015; 71: 3549
    • 1f Zheng C, You S.-L. Nat. Prod. Rep. 2019; 36: 1589
    • 1g Khazir J, Mir BA, Mir SA, Cowan D. J. Asian Nat. Prod. Res. 2013; 15: 764
    • 1h Saxton JE. Nat. Prod. Rep. 1995; 12: 385
    • 1i Sears JE, Boger DL. Acc. Chem. Res. 2015; 48: 653

      For reviews, see:
    • 2a Bonjoch J, Solé D. Chem. Rev. 2000; 100: 3455
    • 2b Pritchett BP, Stoltz BM. Nat. Prod. Rep. 2018; 35: 559
    • 2c Xu Z, Wang Q, Zhu J. Chem. Soc. Rev. 2018; 47: 7882

      For reviews, see:
    • 3a James MJ, O’Brien P, Taylor RJ. K, Unsworth WP. Chem. Eur. J. 2016; 22: 2856
    • 3b Wang Y, Xie F, Lin B, Cheng M, Liu Y. Chem. Eur. J. 2018; 24: 14302
    • 3c Saya JM, Ruijter E, Orru RV. A. Chem. Eur. J. 2019; 25: 8916

      For selected examples, see:
    • 4a Zhang L. J. Am. Chem. Soc. 2005; 127: 16804
    • 4b Boonsombat J, Zhang H, Chughtai MJ, Hartung J, Padwa A. J. Org. Chem. 2008; 73: 3539
    • 4c Martin DB. C, Vanderwal CD. J. Am. Chem. Soc. 2009; 131: 3472
    • 4d Campbell EL, Zuhl AM, Liu CM, Boger DL. J. Am. Chem. Soc. 2010; 132: 3009
    • 4e Martin DB. C, Vanderwal CD. Chem. Sci. 2011; 2: 649
    • 4f Zhu J, Liang Y, Wang L, Zheng Z.-B, Houk KN, Tang Y. J. Am. Chem. Soc. 2014; 136: 6900
    • 4g Li Y, Zhang Q, Du Q, Zhai H. Org. Lett. 2016; 18: 4076

      For selected examples, see:
    • 5a Hili R, Yudin AK. J. Am. Chem. Soc. 2006; 128: 14772
    • 5b Delgado R, Blakey SB. Eur. J. Org. Chem. 2009; 1506
    • 5c Cai Q, Zheng C, Zhang J.-W, You S.-L. Angew. Chem. Int. Ed. 2011; 50: 8665
    • 5d Jones SB, Simmons B, Mastracchio A, MacMillan DW. C. Nature 2011; 475: 183
    • 5e Modha SG, Kumar A, Vachhani DD, Jacobs J, Sharma SK, Parmar VS, Van Meervelt L, Van der Eycken EV. Angew. Chem. Int. Ed. 2012; 51: 9572
    • 5f Fan F, Xie W, Ma D. Chem. Commun. 2012; 48: 7571
    • 5g Fan F, Xie W, Ma D. Org. Lett. 2012; 14: 1405
    • 5h Kawano M, Kiuchi T, Negishi S, Tanaka H, Hoshikawa T, Matsuo J.-I, Ishibashi H. Angew. Chem. Int. Ed. 2013; 52: 906
    • 5i Zhao S, Sirasani G, Vaddypally S, Zdilla MJ, Andrade RB. Angew. Chem. Int. Ed. 2013; 52: 8309
    • 5j Wu X, Huang J, Guo B, Zhao L, Liu Y, Chen J, Cao W. Adv. Synth. Catal. 2014; 356: 3377
    • 5k Zhu J, Cheng Y.-J, Kuang X.-K, Wang L, Zheng Z.-B, Tang Y. Angew. Chem. Int. Ed. 2016; 55: 9224

      For selected examples, see:
    • 6a de Graaff C, Bensch L, Boersma SJ, Cioc RC, van Lint MJ, Janssen E, Turner NJ, Orru RV. A, Ruijter E. Angew. Chem. Int. Ed. 2015; 54: 14133
    • 6b Xu H, Li Y.-P, Cai Y, Wang G.-P, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2017; 139: 7697
    • 6c Leng L, Zhou X, Liao Q, Wang F, Song H, Zhang D, Liu X.-Y, Qin Y. Angew. Chem. Int. Ed. 2017; 56: 3703
    • 6d Wang N, Liu J, Wang C, Bai L, Jiang X. Org. Lett. 2018; 20: 292
    • 6e Wagnières O, Xu Z, Wang Q, Zhu J. J. Am. Chem. Soc. 2014; 136: 15102
    • 7a Westling M, Smith R, Livinghouse T. J. Org. Chem. 1986; 51: 1159
    • 7b Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 7c Wang W, Herdtweck E, Dömling A. Chem. Commun. 2010; 46: 770

      For reviews, see:
    • 8a Slobbe P, Ruijter E, Orru RV. A. Med. Chem. Commun. 2012; 3: 1189
    • 8b Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 8c Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 8d Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 8e Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295
  • 10 Zhao X, Liu X, Mei H, Guo J, Lin L, Feng X. Angew. Chem. Int. Ed. 2015; 54: 4032
  • 11 Zhao X, Liu X, Xiong Q, Mei H, Ma B, Lin L, Feng X. Chem. Commun. 2015; 51: 16076
  • 12 Saya JM, Oppelaar B, Cioc RC, van der Heijden G, Vande Velde CM. L, Orru RV. A, Ruijter E. Chem. Commun. 2016; 52: 12482
  • 13 Liu Y.-L, Mao X.-Y, Lin X.-T, Chen G.-S. Org. Chem. Front. 2018; 5: 2303
  • 14 Li L, Liu J, Shi M. Org. Lett. 2018; 20: 7076
  • 15 Saya JM, Roose TR, Peek JJ, Weijers B, de Waal TJ. S, Velde CM. L. V, Orru RV. A, Ruijter E. Angew. Chem. Int. Ed. 2018; 57: 15232

    • For a review, see:
    • 16a de Meijere A, Schirmer H, Duetsch M. Angew. Chem. Int. Ed. 2000; 39: 3964

    • For examples, see:
    • 16b Aumann R. Angew. Chem. Int. Ed. 1988; 27: 1456
    • 16c Merceron N, Miqueu K, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 2002; 124: 6806
    • 16d Canac Y, Conejero S, Donnadieu B, Schoeller WW, Bertrand G. J. Am. Chem. Soc. 2005; 127: 7312
    • 16e Deng DS, Liu P, Ji BM, Wang L, Fu WJ. Tetrahedron Lett. 2010; 51: 5567
    • 16f Deng DS, Liu P, Ji BM, Fu WJ, Li L. Catal. Lett. 2010; 137: 163
    • 16g Zhou F, Ding K, Cai Q. Chem. Eur. J. 2011; 17: 12268
    • 16h Deng DS, Kang GH, Ji BM, Li HL, Qu GR, Fan XS. Aust. J. Chem. 2013; 66: 1342
    • 16i Dai Q, Jiang Y, Yu J.-T, Cheng J. Chem. Commun. 2015; 51: 16645
    • 16j Deng DS, Guo H, Ji BM, Wang WZ, Ma LF, Luo F. New J. Chem. 2017; 41: 12611
    • 16k Bu X.-B, Wang Z, Wang X.-D, Meng X.-H, Zhao Y.-L. Adv. Synth. Catal. 2018; 360: 2945
    • 16l Wang L, Deng DS, Škoch K, Daniliuc CG, Kehr G, Erker G. Organometallics 2019; 38: 1897
    • 16m Zhang L, Liu T, Wang Y.-M, Chen J, Zhao Y.-L. Org. Lett. 2019; 21: 2973
    • 17a Chen G.-S, Chen S.-J, Luo J, Mao X.-Y, Chan AS.-C, Sun RW.-Y, Liu Y.-L. Angew. Chem. Int. Ed. 2020; 59: 614
    • 17b Luo J, Chen G.-S, Chen S.-J, Liu Y.-L. Sci. Bull. 2020; 65: in press DOI: 10.1016/j.scib.2019.12.023
    • 17c Zhao Y, Liu X, Zheng L, Du Y, Shi X, Liu Y, Yan Z, You J, Jiang Y. J. Org. Chem. 2020; 85: 912
    • 17d Mao X.-Y, Lin X.-T, Yang M, Chen G.-S, Liu Y.-L. Adv. Synth. Catal. 2018; 360: 3643
    • 17e Luo J, Fang Y.-B, Mao X.-Y, Yang M, Zhao Y.-L, Liu Y.-L, Chen G.-S, Ji Y.-F. Adv. Synth. Catal. 2019; 361: 1408
    • 17f Liu Y.-L, Lin X.-T. Adv. Synth. Catal. 2019; 361: 876
    • 17g Chen S, Zhang J, Yang M, Liu F, Xie Z, Liu Y, Lin W, Wang D, Li X, Wang J. Chem. Commun. 2019; 55: 3879
    • 17h Liu Y.-L, Yin X.-P, Zhou J. Chin. J. Chem. 2018; 36: 321
    • 18a Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 18b Schreyer L, Properzi R, List B. Angew. Chem. Int. Ed. 2019; 58: 12761