Synlett 2020; 31(08): 801-804
DOI: 10.1055/s-0039-1690835
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Promoted Coupling of Propiophenones and Arylhydrazines for the Synthesis of 1,3-Diarylpyrazoles

Thuyet L. D. Pham
,
Tien M. Nguyen
,
Khuong A. Tran
,
Ha V. Dang
,
Nam T. S. Phan
,
Ha V. Le
,
This research is funded by the Ho Chi Minh City University of Technology – VNU-HCM (grant number T-KTHH-2018-100).
Further Information

Publication History

Received: 19 January 2020

Accepted after revision: 04 February 2020

Publication Date:
26 February 2020 (online)


Abstract

Synthesis of 1,3-diarylpyrazoles from commercial substrates and/or simple transformations is still underrated. In this report, we have developed a method for copper-promoted coupling of propiophenones and arylhydrazines. The reactions afforded substituted pyrazoles in the presence of TEMPO oxidant, acetic acid additive, and DMF solvent. A number of functionalities were compatible with reaction conditions, including halogens, methoxy, trifluoromethyl, and nitro groups. An indazole could be obtained if an electron-poor propiophenone was used.

Supporting Information

 
  • References and Notes

    • 1a Ito Y, Hirao T, Saegusa T. J. Org. Chem. 1978; 43: 1011
    • 1b Larock RC, Hightower TR, Kraus GA, Hahn P, Zheng D. Tetrahedron Lett. 1995; 36: 2423
    • 1c Diao T, Stahl SS. J. Am. Chem. Soc. 2011; 133: 14566
    • 1d Li H, Jiang Q, Jie X, Shang Y, Zhang Y, Goossen LJ, Su W. ACS Catal. 2018; 8: 4777
    • 1e Chen M, Rago AJ, Dong G. Angew. Chem. Int. Ed. 2018; 57: 1625
    • 1f Terao Y, Kametani Y, Wakui H, Satoh T, Miura M, Nomura M. Tetrahedron 2001; 57: 5967
    • 1g Ueno S, Shimizu R, Kuwano R. Angew. Chem. Int. Ed. 2009; 48: 4543
    • 1h Jie X, Shang Y, Zhang X, Su W. J. Am. Chem. Soc. 2016; 138: 5623
    • 1i Shang Y, Jie X, Jonnada K, Zafar SN, Su W. Nat. Commun. 2017; 8: 2273
    • 1j Zhu X, Chiba S. Org. Biomol. Chem. 2014; 12: 4567
    • 2a Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 2b Lahm GP, Cordova D, Barry JD. Bioorg. Med. Chem. 2009; 17: 4127
    • 2c Bondock S, Fadaly W, Metwally MA. Eur. J. Med. Chem. 2010; 45: 3692
    • 2d Manfredini S, Bazzanini R, Baraldi PG, Guarneri M, Simoni D, Marongiu ME, Pani A, Tramontano E, Colla PL. J. Med. Chem. 1992; 35: 917
    • 2e Wade CR, Corrales-Sanchez T, Narayan TC, Dincă M. Energy Environ. Sci. 2013; 6: 2172
    • 2f Arrozi US. F, Bon V, Kutzscher C, Senkovska I, Kaskel S. Dalton Trans. 2019; 48: 3415
    • 2g Wang L, Agnew DW, Yu X, Figueroa JS, Cohen SM. Angew. Chem. Int. Ed. 2018; 57: 511
    • 2h Ojwach SO, Darkwa J. Inorg. Chim. Acta 2010; 363: 1947
    • 2i Singer RA, Caron S, McDermott RE, Arpin P, Do NM. Synthesis 2003; 1727
    • 2j Dutta I, Yadav S, Sarbajna A, De S, Hölscher M, Leitner W, Bera JK. J. Am. Chem. Soc. 2018; 140: 8662
    • 2k Honrado M, Otero A, Fernández-Baeza J, Sánchez-Barba LF, Garcés A, Lara-Sánchez A, Martínez-Ferrer J, Sobrino S, Rodríguez AM. Organometallics 2015; 34: 3196
    • 3a Miller RD, Reiser O. J. Heterocycl. Chem. 1993; 30: 755
    • 3b Bagley MC, Lubinu MC, Mason C. Synlett 2007; 704
    • 3c Comas-Barceló J, Foster RS, Fiser B, Gomez-Bengoa E, Harrity JP. A. Chem. Eur. J. 2015; 21: 3257
    • 4a Schrank J, Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2012; 18: 4827
    • 4b Panda N, Jena AK. J. Org. Chem. 2012; 77: 9401
    • 4c Tang X, Huang L, Yang J, Xu Y, Wu W, Jiang H. Chem. Commun. 2014; 50: 14793
    • 4d Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
    • 4e Pünner F, Sohtome Y, Sodeoka M. Chem. Commun. 2016; 52: 14093
    • 5a Xu Z.-L, Li H.-X, Ren Z.-G, Du W.-Y, Xu W.-C, Lang J.-P. Tetrahedron 2011; 67: 5282
    • 5b Mallia CJ, Burton PM, Smith AM. R, Walter GC, Baxendale IR. Beilstein J. Org. Chem. 2016; 12: 1598
  • 6 Evans RW, Zbieg JR, Zhu S, Wei L, MacMillan DW. C. J. Am. Chem. Soc. 2013; 155: 16074
  • 7 3-(3-Chlorophenyl)-1-phenyl-1H-pyrazole (2ca) – Typical Procedure To a 16 mL vial was added 3′-chloropropiophenone (169 mg, 1 mmol), phenylhydrazine (432 mg, 4 mmol), Cu(OAc)2 (46 mg, 0.25 mmol), TEMPO (624 mg, 4 mmol), acetic acid (60 mg, 1 mmol), and DMF (5 mL). The vial was placed into a preheated oil bath (140 °C) and vigorously stirred for 48 h. The reaction mixture was cooled to room temperature, quenched with brine (10 mL), then extracted with EtOAc (3 × 15 mL). Combined organic phases were dried over Na2SO4, filtered, and concentrated. Crude product was purified by flash column chromatography (hexanes/EtOAc, 10:1) to obtain 179 mg (70%) of a white solid. This compound is known.4c 1H NMR (500 MHz, CDCl3): δ = 7.90 (d, J = 2.5 Hz, 1 H), 7.86 (t, J = 1.9 Hz, 1 H), 7.71 (tt, J = 7.6, 1.2 Hz, 3 H), 7.45–7.37 (m, 2 H), 7.29 (t, J = 7.8 Hz, 1 H), 7.27–7.21 (m, 2 H), 7.19 (s, 1 H), 6.70 (d, J = 2.5 Hz, 1 H) ppm. 13C NMR (126 MHz, CDCl3): δ = 151.6, 135.0, 134.7, 129.9, 129.5, 128.2, 128.0, 126.6, 125.9, 123.9, 119.2, 105.2 ppm. One carbon signal could not be located.
  • 8 Small amounts of dehydrogenation products were observed by GC–MS analysis.
    • 9a Xiong X, Jiang Y, Ma D. Org. Lett. 2012; 14: 2552
    • 9b Esmaeili-Marandi F, Saeedi M, Mahdavi M, Yavari I, Foroumadi A, Shafiee A. Synlett 2014; 25: 2605
    • 9c Wei W, Wang Z, Yang X, Yu W, Chang J. Adv. Synth. Catal. 2017; 359: 3378
  • 10 One reviewer recommended the use of 4′-nitropropiophenone; however, only the starting material was recovered. For NO2-directed intermolecular amination, see selected example: Kumar S, Rathore V, Verma A, Prasad CD, Kumar A, Yadav A, Jana S, Sattar M, Meenakshi Meenakshi, Kumar S. Org. Lett. 2015; 17: 82
  • 11 For selected example of intermolecular ene–imine cycloaddition, see: Li Z, Hu B, Wu Y, Fei C, Deng L. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 1730
  • 12 Attempts to isolate possible intermediates are ongoing.