Synthesis 2020; 52(11): 1666-1679
DOI: 10.1055/s-0039-1690822
paper
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Synthesis of 2-Substituted 2-Thiazolines and 5,6-Dihydro-4H-1,3-thiazines

María C. Mollo
a   Universidad de Buenos Aires, CONICET, Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina   Email: lorelli@ffyb.uba.ar
,
Juan A. Bisceglia
a   Universidad de Buenos Aires, CONICET, Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina   Email: lorelli@ffyb.uba.ar
,
Natalia B. Kilimciler
a   Universidad de Buenos Aires, CONICET, Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina   Email: lorelli@ffyb.uba.ar
,
Michele Mancinelli
b   Department of Industrial Chemistry ‘Toso Montanari’, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
,
a   Universidad de Buenos Aires, CONICET, Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina   Email: lorelli@ffyb.uba.ar
› Author Affiliations
This work was supported by the University of Buenos Aires (Grant No. 20020170100189BA).
Further Information

Publication History

Received: 28 December 2019

Accepted after revision: 23 January 2020

Publication Date:
24 February 2020 (online)


Abstract

An efficient and general method for the synthesis of 2-substituted thiazolines and 5,6-dihydro-4H-1,3-thiazines is developed via microwave-assisted ring closure of ω-thioamidoalcohols promoted by ethyl polyphosphate (PPE). The cyclization reaction involves an SN2-type mechanism and features the advantages of very short reaction times, high yields and a predictable stereochemical outcome. The acyclic precursors are prepared in high overall yields by an improved diacylation–thionation–saponification sequence from commercially available ω-amino­alcohols. The whole process is metal-free and operationally simple.

Supporting Information

 
  • References

  • 1 Schmidt E, Nelson J, Rasko D, Sudek S, Eisen J, Haygood M, Ravel J. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 7315
  • 2 Boyce RJ, Mulqueen GC, Pattenden G. Tetrahedron Lett. 1994; 35: 5705
  • 3 Carmeli S, Moore RE, Patterson GM. L. Tetrahedron Lett. 1991; 32: 2593
  • 4 McKeever B, Pattenden G. Tetrahedron 2003; 59: 2713
  • 5 Caujolle R, Baziard-Mouysset G, Favrot JD, Payard M, Loiseau PR, Amarouch H, Linas MD, Seguela JP, Loiseau PM, Bories C, Gayral P. Eur. J. Med. Chem. 1993; 28: 29
  • 6 Bergeron RJ, Wiegand J, Dionis JB, Egli-Karmakka M, Frei J, Huxley-Tencer A, Peter HH. J. Med. Chem. 1991; 34: 2072
  • 7 Tomizawa M, Cowan A, Casida JE. Toxicol. App. Pharm. 2001; 177: 77
  • 8 McFarland JW, Howes HL. Jr, Conover LH, Lynch JE, Austin WC, Morgan DH. J. Med. Chem. 1970; 13: 113
  • 9 McFarland JW, Ray VA. US 3629247A, 1971 ; Chem. Abstr. 1972, 76, 113235
  • 10 Koch RC. US 3930001A, 1975 ; Chem. Abstr. 1976, 84, 175146
  • 11 Ehrler J, Farooq S. Synlett 1994; 702
  • 12 Zhou Z, Alper H. J. Org. Chem. 1996; 61: 1256
  • 13 Jiao L, Zhang Q, Liang Y, Zhang S, Xu J. J. Org. Chem. 2006; 71: 815
  • 14 Qi H, Yang Z, Xu J. Synthesis 2011; 723
  • 15 Yamakuchi M, Matsunaga H, Tokuda R, Ishizuka T, Nakajima M, Kunieda T. Tetrahedron Lett. 2005; 46: 4019
  • 16 McKeon SC, Müller-Bunz H, Guiry PJ. Eur. J. Org. Chem. 2009; 4833
  • 17 Lu S, Du D, Zhang S, Xu J. Tetrahedron: Asymmetry 2004; 15: 3433
  • 18 Nishio T, Kodama Y, Tsurumi Y. Phosphorus, Sulfur Silicon Relat. Elem. 2005; 180: 1449
  • 19 Abrunhosa-Thomas I, Betz A, Denancé M, Dez I, Gaumont A, Gulea M. Heteroat. Chem. 2010; 21: 242
  • 20 Vorbrüggen H, Krolikiewicz K. Tetrahedron Lett. 1981; 22: 4471
  • 21 Wipf P, Wang X. J. Comb. Chem. 2002; 4: 656
  • 22 Seijas JA, Vázquez-Tato MP, Crecente-Campo J. Tetrahedron 2008; 64: 9280
  • 23 Hojati SF, Nezhadhoseiny SA. J. Serb. Chem. Soc. 2012; 77: 1181
  • 24 Bazgir A, Amini MM, Fazaeli Y. Open Catal. J. 2009; 2: 163
  • 25 Baltork IM, Moghadam M, Tangestaninejad S, Mirkhani V, Hojati SF. Catal. Commun. 2008; 9: 1153
  • 26 Trose M, Lazreg F, Lesieur M, Cazin CS. J. Green Chem. 2015; 17: 3090
  • 27 Busacca CA, Dong Y, Spinelli EM. Tetrahedron Lett. 1996; 37: 2935
  • 28 Katritzky AR, Cai C, Suzuki K, Singh SK. J. Org. Chem. 2004; 69: 811
  • 29 Charette AB, Chua P. J. Org. Chem. 1998; 63: 908
  • 30 Pathak U, Bhattacharyya S, Dhruwansh V, Pandey LK, Tank R, Suryanarayana MV. S. Green Chem. 2011; 13: 1648
  • 31 Fernández X, Fellous R, Duñach E. Tetrahedron Lett. 2000; 41: 3381
  • 32 Petersson MJ, Jenkins DI, Loughlin WA. Org. Biomol. Chem. 2009; 7: 739
  • 33 Wenker H. J. Am. Chem. Soc. 1935; 57: 1079
  • 34 Nishio T, Konno Y, Ori M, Sakamoto M. Eur. J. Org. Chem. 2001; 3553
  • 35 Kodama Y, Ori M, Nishio T. Helv. Chim. Acta 2005; 88: 187
  • 36 Lafargue P, Guenot P, Lellouche JP. Synlett 1995; 171
  • 37 Leflemme N, Marchand P, Gulea M, Masson S. Synthesis 2000; 1143
  • 38 Pfund E, Lequeux T, Masson S, Vazeux M. Org. Lett. 2002; 4: 5
  • 39 Mahler SG, Serra GL, Antonow D, Manta E. Tetrahedron Lett. 2001; 42: 8143
  • 40 Abrunhosa I, Gulea M, Levillain J, Masson S. Tetrahedron: Asymmetry 2001; 12: 2851
  • 41 Yan Z, Guan C, Yu Z, Tian W. Tetrahedron Lett. 2013; 54: 5788
    • 42a Heredia DA, Larghi EL, Kaufman TS. Eur. J. Org. Chem. 2016; 1397
    • 42b Stefańska B, Bontemps-Gracz MM, Antonini I, Martelli S, Arciemiuk M, Piwkowska A, Rogacka D, Borowski E. Bioorg. Med. Chem. 2005; 13: 1969
    • 42c Yoshida Y, Mohri K, Isobe K, Itoh T, Yamamoto K. J. Org. Chem. 2009; 74: 6010
    • 42d Sarma T, Panda PK, Anusha PT, Venugopal Rao S. Org. Lett. 2011; 13: 188
    • 42e Aron ZD, Overman LE. Chem. Commun. 2004; 253
    • 42f Geist JG, Lauw S, Illarionova V, Illarionov B, Fischer M, Gräwert T, Rohdich F, Eisenreich W, Kaiser J, Groll M, Scheurer C, Wittlin S, Alonso-Gómez JL, Bernd Schweizer W, Bacher A, Diederich F. ChemMedChem 2010; 5: 1092
    • 42g Agbaje OC, Fadeyi OO, Adamson Fadeyi S, Myles LE, Okoro CO. Bioorg. Med. Chem. Lett. 2011; 21: 989
    • 42h Hilmey DG, Paquette LA. Org. Lett. 2005; 7: 2067
    • 42i Niemczak M, Czerniak K, Kopczyński T. New J. Chem. 2015; 39: 1868
    • 42j López SE, Restrepo J, Salazar J. J. Chem. Res. 2007; 9: 497
  • 43 Sharma A, Appukkuttan P, Van der Eycken E. Chem. Commun. 2012; 48: 1623
    • 44a García MB, Torres RA, Orelli LR. Tetrahedron Lett. 2006; 47: 4857
    • 44b Díaz JE, Bisceglia J. Á, Mollo MC, Orelli LR. Tetrahedron Lett. 2011; 52: 1895
    • 44c Díaz JE, Gruber N, Orelli LR. Tetrahedron Lett. 2011; 52: 6443
    • 44d Díaz JE, Vanthuyne N, Rispaud H, Roussel C, Vega D, Orelli LR. J. Org. Chem. 2015; 80: 1689
    • 44e Díaz JE, Mollo MC, Orelli LR. Beilstein J. Org. Chem. 2016; 12: 2026
    • 44f Mollo MC, Orelli LR. Org. Lett. 2016; 18: 6116
    • 44g Díaz JE, Ranieri S, Gruber N, Orelli LR. Beilstein J. Org. Chem. 2017; 13: 1470
    • 44h Díaz JE, Mazzanti A, Orelli LR, Mancinelli M. ACS Omega 2019; 4: 4712
  • 45 Mollo MC, Kilimciler NB, Bisceglia JA, Orelli LR. Beilstein J. Org. Chem. 2019; 16: 32
    • 46a Cherkasov RA, Kutyrev GA, Pudovick AN. Tetrahedron 1985; 41: 2567
    • 46b Brillon D. Synth. Commun. 1992; 12: 297
    • 46c Jesberger M, Davis TP, Barner L. Synthesis 2003; 1929
    • 46d Ozturk T, Ertas E, Mert O. Chem. Rev. 2007; 107: 5210
  • 47 Nishio T. J. Org. Chem. 1997; 62: 1106
  • 48 Pathak U, Goud DR. Synthesis 2012; 44: 3678
  • 49 Roggero J, Metzger J. Bull. Soc. Chim. Fr. 1963; 11: 2531 ; Chem. Abstr. 1964, 60, 4124
    • 50a Batista JM. Jr, Blanch EW, da Silva Bolzani V. Nat. Prod. Rep. 2015; 32: 1280
    • 50b He Y, Wang B, Dukor RK, Nafie LA. Appl. Spectrosc. 2011; 65: 699
    • 50c Nafie LA. Nat. Prod. Commun. 2008; 3: 451
  • 51 Morcuende A, Ors M, Valverde S, Herradon B. J. Org. Chem. 1996; 61: 5264
  • 52 Xu Q, Li Z. Tetrahedron Lett. 2009; 50: 6838
  • 53 Alcaide B, Casarrubios L, Domínguez G, Sierra MA. J. Org. Chem. 1993; 58: 3886
  • 54 Phillips AP, Maggiolo A. J. Am. Chem. Soc. 1950; 72: 4920
  • 55 Huneck S, Porzel A. Z. Naturforsch. B 2014; 49: 569
  • 56 Loeppky RN, Shi J, Barnes CL, Geddam S. Chem. Res. Toxicol. 2008; 21: 295
  • 57 Arm K, Tamura S, Masumizu T, Kawai K, Nakajima S, Akira U. Can. J. Chem. 1990; 68: 903
  • 58 Rand AW, Montgomery J. ChemRxiv 2019; DOI: preprint; 10.26434/chemrxiv.9978824.v1.
  • 59 Bu Q, Rogge T, Kotek V, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 765
  • 60 Robbe Y, Fernandez JP, Chapat JP, Sentenac-Roumanou H, Fatome M. Eur. J. Med. Chem. 1985; 20: 16
  • 61 Nguyen TB, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2014; 16: 310
  • 62 Wipf P, Hayes GB. Tetrahedron 1998; 54: 6987
  • 63 Kamila S, Biehl ER. J. Heterocycl. Chem. 2007; 44: 407
  • 64 Hojati SF, Mohammadpoor-Baltork I, Maleki B, Gholizadeh M, Shafiezadeh F, Haghdoust M. Can. J. Chem. 2010; 88: 135
  • 65 Yu Y, Chen H.-L, Wang L.-Y, Chen X.-Z, Fu B. Molecules 2009; 14: 4858
  • 66 Babcock SH, Adams R. J. Am. Chem. Soc. 1937; 59: 2260